Open Access
EPJ Web Conf.
Volume 195, 2018
3rd International Conference “Terahertz and Microwave Radiation: Generation, Detection and Applications” (TERA-2018)
Article Number 02010
Number of page(s) 2
Section Optoelectronic & Solid-State Sources of THz Radiation
Published online 23 November 2018
  1. Van der Weide D. Applications and Outlook for Electronic Terahertz Technology // Optics & Photonics News. 2003. V.14. No.4. P. 48-53 [CrossRef] [Google Scholar]
  2. Xiong Xu, Yanyu Wei, Fei Shen, Hairong Yin, Jin Xu et al. A watt-class 1-THz backward-wave oscillator based on sine waveguide // Phys. Plasmas. 2012. 19, 013113. [CrossRef] [Google Scholar]
  3. Williams B.S. Terahertz quantum-cascade lasers // Nature Photonics. 2007. V.1. P. 517. [CrossRef] [Google Scholar]
  4. Fathololoumi S., Dupont E., Chan C.W.I., Wasilewski Z.R., Laframboise S.R., Ban D., Matyas A., Jirauschek C., Hu Q., Liu H.C. Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling // Optics Express. 2012. 20 (4). 3866. [CrossRef] [PubMed] [Google Scholar]
  5. Wang X., Shen C., Jiang T., Zhan Zh., Deng Q., Li W., Wu W., Yang N., Chu W., Duan S. High-power terahertz quantum cascade lasers with 0.23 W in continuous wave mode. // AIP Advances. 2016. 6. 075210. [CrossRef] [Google Scholar]
  6. Dodel G. On the history of far-infrared (FIR) gas lasers: Thirty-five years of research and application // Infrared Phys. Technol. 1999. 40 127–39 [CrossRef] [Google Scholar]
  7. Lewis R.A. A review of terahertz sources // J. Phys. D: Appl. Phys. 2014. 47 374001 [CrossRef] [Google Scholar]
  8. Sergey B. Bodrov, Aleksey A. Murzanev, Yury A. Sergeev, Yury A. Malkov, and Andrey N. Stepanov Terahertz generation by tilted-front laser pulses in weakly and strongly nonlinear regimes // Applied Physics Letters. 2013. 103. 251103 [CrossRef] [Google Scholar]
  9. Vidal S., Degert J., Tondusson M., Freysz E., and Oberlé J., Optimized terahertz generation via optical rectification in ZnTe crystals // J. Opt. Soc. Am. B. 2014. 31, 149-153. [CrossRef] [Google Scholar]
  10. Taniuchi T., Nakanishi H. Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator // Journ. Appl. Phys. 2004. V. 95, 7588. [CrossRef] [Google Scholar]
  11. Torrezan A.C., Han S.T., Mastovsky I., Shapiro M.A., Sirigiri J.R., Temkin R.J., Griffin R.G., Barnes A.B. ContinuousWave Operation of a Frequency-Tunable 460-GHz SecondHarmonic Gyrotron for Enhanced Nuclear Magnetic Resonance. // IEEETrans. 2010. V.PS-38. №6.P.1150 [Google Scholar]
  12. Jawla S., Nanni E., Shapiro M. et al.// 2011 36th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). Houston. 2-7 Oct. 2011. N.Y.IEEE, 2011. P. DOI 10.1109. IRMMWTHz.2011.61 05096 [Google Scholar]
  13. Glyavin M.Yu., Ginzburg N.S., Goldenberg A.L., Denisov G.G., Luchinin A.G., Manuilov V.N., Zapevalov V.E., Zotova I.V. THz Gyrotrons: Status and Possible Optimizations // Terahertz Science and Technology, V.5, No. 2, 2012 [Google Scholar]
  14. Glyavin M. Yu., Chirkov A.V., Denisov G.G., et al. Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media. // Review of Scientific Instruments. 2015. 86. 054705. [CrossRef] [PubMed] [Google Scholar]
  15. Idehara T., Saito T., Ogawa I. The potential of the gyrotrons for development of the sub-terahertz and the terahertz frequency range — A review of novel and prospective applications, Proceedings of 2nd International Symposium on the Manipulation of Advanced Smart Materials // ThinSolidFilms. 2008. V. 517. No 4. P.1503, 2008 [Google Scholar]
  16. Idehara T., Glyavin M., Kuleshov A., Sabchevski S., Manuilov V., Zaslavsky V., Zotova I., Sedov A. A novel THz-band double-beam gyrotron for high-field DNP-NMR spectroscopy. // Rev.of Sci.Instrum. 2017. 88. 094708. [CrossRef] [Google Scholar]
  17. Keilmann F., Brazis R., Barkley H., Kasparek W., Thumm M. and Erckmann V. Millimeter-Wave Frequency Tripling in Bulk Semiconductors // EPL (Europhysics Letters), Volume 11, Number 4, p. 337 [CrossRef] [Google Scholar]
  18. Narkowicz R., Siegrist M.R., Moreau Ph., Hogge J.P., Raguotis R. and Brazis R. Third-Order Susceptibility of Silicon Crystals Measured with Millimeter-Wave Gyrotron // Acta Physica Polonica A. 2011. V. 119, No. 4, p. 509 [CrossRef] [Google Scholar]
  19. Seeger K., Microwave frequency multiplication by hot electrons, // J. Appl. Phys. 1963. 34, 1608-1610. [CrossRef] [Google Scholar]
  20. Nimtz G. and Seeger K., Microwave mixing by hot electrons in homogeneous semiconductors // J. Appl. Phys. 1968. 39, 2263-2266. [CrossRef] [Google Scholar]
  21. Mayer A. and Keilmann F., Far-infrared nonlinear optics.I. χ^2 near ionicresonance, // Phys. Rev. B. 1986. 33, 6954-6961. [CrossRef] [Google Scholar]
  22. Dekorsy T., Yakovlev V.A., Seidel W., Helm M., and Keimann F., Infrared phonon-polariton resonance of the nonlinear susceptibility in GaAs // Phys. Rev. Lett. 2003. 90, 055508-1/4. [CrossRef] [Google Scholar]
  23. McFee J.H., Boyd G.D., Schmidt P.H. Redetermination of the nonlinear optical coefficients of Te and GaAs by comparison with Ag3SbS3 // Appl. Phys. Lett. 1970. V.17 P.57. [CrossRef] [Google Scholar]
  24. Flytzanis C. Infrared Dispersion of Second-Order Electric Susceptibilities in Semiconducting Compounds // Phys.Rev. B. 1972. V.6, 1264. [CrossRef] [Google Scholar]
  25. Madelung, Semiconductors: Data Handbook (SpringerVerlag, New York, 2003). [Google Scholar]
  26. Akitt D., Johnson C., Coleman P. Nonlinear susceptibility of CdTe // IEEE Journal of quantum electronics. 1970. V. QE 6, 496. [CrossRef] [Google Scholar]
  27. Frits Zernike & John E. Midwinter Applied Nonlinear Optics John Wiley & Sons Inc. 1973 [Google Scholar]
  28. Alyabyeva L.N., Zhukova E.S., Belkin M.A., and Gorshunov B.P. Dielectric properties of semi-insulating Fe-doped InP in the terahertz spectral region // Scientific Reports. 2017. 7. 7360. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.