Open Access
Issue
EPJ Web Conf.
Volume 195, 2018
3rd International Conference “Terahertz and Microwave Radiation: Generation, Detection and Applications” (TERA-2018)
Article Number 03015
Number of page(s) 2
Section Generation of THz Radiation by Intense Laser Pulses
DOI https://doi.org/10.1051/epjconf/201819503015
Published online 23 November 2018
  1. Clough B., Dai J., Zhang, X.-C. Laser air photonics: beyond the terahertz gap // Mater. Today. 2012. V. 15, No.1-2. P. 50-58. [CrossRef] [Google Scholar]
  2. Vvedenskii, N. V., et al. Two-color laser-plasma generation of terahertz radiation using a frequency-tunable half harmonic of a femtosecond pulse // Phys. Rev. Lett. 2014. 112, No.5. P. 055004. [CrossRef] [PubMed] [Google Scholar]
  3. Balinas, T. D. et al. CEP-stable tunable THzemission originating from laser-waveform-controlled subcycle plasma-electron bursts // Opt. Express. 2015. V. 23, No. 12. P. 15278-15289. [CrossRef] [PubMed] [Google Scholar]
  4. Theberge, F. et al. Generation of tunable and broadband far-infrared laser pulses during two-color filamentation // Phys. Rev. A 2010. V. 81, No.3. P. 033821. [CrossRef] [Google Scholar]
  5. Kostin, V. A., Laryushin, I. D., Silaev, A. A., Vveden-skii, N. V. Ionization-induced multiwave mixing: terahertz generation with two-color laser pulses of various frequency ratios // Phys. Rev. Lett. 2016. V. 117, No. 3. P. 035003. [CrossRef] [PubMed] [Google Scholar]
  6. Zhang, L.-L. et al. Observation of terahertz radiation via the two-color laser scheme with uncommon frequency ratios // Phys. Rev. Lett. 2017. V.119, No. 23. P. 235001. [CrossRef] [PubMed] [Google Scholar]
  7. Silaev, A. A., Kostin, V. A., Laryushin, I. D., Vveden skii, N. V. Ionization mechanism of the generation of tunable ultrashort pulses in the mid-infrared range // JETP Letters. 2018. V. 107, No. 3. P.151-156. [CrossRef] [Google Scholar]
  8. Kostin V.A., Vvedenskii N.V. Generation of Fewand Subcycle Radiation in Midinfrared-to-Deep-Ultraviolet Range During Plasma Production by Multicolor Femtosecond Pulses // Phys. Rev. Lett. V. 120, No. 6. P. 065002. [CrossRef] [PubMed] [Google Scholar]
  9. Silaev, A.A., Vvedenskii, N. V. Residual-current excitation in plasmas produced by few-cycle laser pulses // Phys. Rev. Lett. 2009. V. 102, No. 11. P. 115005. [CrossRef] [PubMed] [Google Scholar]
  10. Silaev, A. A., Vvedenskii N. V. Analytical description of generation of the residual current density in the plasma produced by a few-cycle laser pulse // Phys. Plasmas. 2015. V. 22, No. 5. P. 053103. [CrossRef] [Google Scholar]
  11. Alexandrov, L. N., Emelin, M. Yu., Ryabikin M. Yu. Unidirectional current excitation in tunneling ionization of asymmetric molecules // Phys. Rev. A. 2013. V. 87, No. 1. P. 013414. [CrossRef] [Google Scholar]
  12. Ullrich, C. A. Time-dependent density-functional theory: concepts and applications // Oxford University Press. 2012. [Google Scholar]
  13. Krausz, F., Ivanov, M. Attosecond physics // Rev. Mod. Phys. 2009. V. 81, No. 1. P. 163. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.