Open Access
EPJ Web Conf.
Volume 195, 2018
3rd International Conference “Terahertz and Microwave Radiation: Generation, Detection and Applications” (TERA-2018)
Article Number 06011
Number of page(s) 2
Section Study of Materials (Including Nano- and Metamaterials) with the Help of THz & MW Radiation. Time-Domain and CW Spectroscopy
Published online 23 November 2018
  1. Mlawer E. J., et al. Development and recent evaluation of the MT_CKD model of con-tinuum absorption // Philos. Trans. R. Soc. A. 2012. No. 370. P. 2520 – 56. [NASA ADS] [CrossRef] [Google Scholar]
  2. Campargue A., et al. Accurate laboratory determination of the near infrared water vapor self-continuum. A test of the MT_CKD model. J. Geophys. Res. Atmos. 2016. No. 13. P. 180 203. [Google Scholar]
  3. Gordon I. E., et al. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Rad. Trans. 2017. No. 203. P. 3–69. [NASA ADS] [CrossRef] [Google Scholar]
  4. Podobedov V. B., et al. New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz. J. Quant. Spectrosc. Rad. Trans. 2008. No. 109. P. 458 – 67. [CrossRef] [Google Scholar]
  5. Burch D.E. In: Continuum absorption by H2O. 1982. Report No. AFGL-TR-81-0300 [CrossRef] [Google Scholar]
  6. Odintsova T. A. et al. Water Vapor Continuum in the Range of Rotational Spectrum of H2O Molecule: New Experimental Data and Their Comparative Analysis. J. Quant. Spectrosc. Rad. Trans. 2017. No.187. P. 116–123 [CrossRef] [Google Scholar]
  7. Koshelev M. A., et al. Millimeter Wave Continuum Absorption in Moist Nitrogen at Temperatures 261–328 K. J. Quant. Spectrosc. Rad. Trans. 2011. V. 112. No. 270. P. 4 – 12. [Google Scholar]
  8. Kuhn T., et al. Water vapor continuum: absorption measurements at 350 GHz and model calculations. J. Quant. Spectrosc. Rad. Trans. 2002. No. 74. P. 545 – 62. [CrossRef] [Google Scholar]
  9. Tretyakov M. Yu., et al. Water Dimer Rotationally Resolved Millimeter-Wave Spectrum Observation at Room Temperature. Phys. Rev. Lett. 2013. No. 110. P. 093001 [CrossRef] [PubMed] [Google Scholar]
  10. Serov E. A., et al. Rotationally Resolved Water Dimer Spectra in Atmospheric Air and Pure Water Vapour in the 188–258 GHz Range. Phys. Chem. Chem. Phys. 2014. V. 16. No. 47. P. 26221 – 33. [CrossRef] [PubMed] [Google Scholar]
  11. Scribano Y., Leforestier C. Contribution of water dimer absorption to the millimeter and far infrared atmospheric water continuum. J. Chem. Phys. 2007. No. 126. P. 234301. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.