Open Access
EPJ Web Conf.
Volume 195, 2018
3rd International Conference “Terahertz and Microwave Radiation: Generation, Detection and Applications” (TERA-2018)
Article Number 08001
Number of page(s) 2
Section Terahertz & Microwave Imaging: Tomography, Holography and Near-Field Microscopy
Published online 23 November 2018
  1. Fokina, I. N. et al. Impact of structure geometry on scattering in partially-ordered media // Journal of Quantitative Spectroscopy & Radiative Transfer 2014. V. 149, P. 108–116. [CrossRef] [Google Scholar]
  2. Dolganova, I. N. et al. Combined terahertz imaging system for enhanced imaging quality // Optical and Quantum Electronics 2016. V. 48, No. 6, P. 325. [CrossRef] [Google Scholar]
  3. Dolganova, I. N. et al. A hybrid continuous-wave terahertz imaging system // Review of Scientic Instruments 2016. V. 86, P. 113704. [CrossRef] [Google Scholar]
  4. Chernomyrdin, N. V. et al. Reflection-mode continuous-wave 0.15lambda-resolution terahertz solid immersion microscopy of soft biological tissues // Applied Physics Letters 2018. V. 113, No. 11, P. 111102. [CrossRef] [Google Scholar]
  5. Chernomyrdin, N. V. et al. Solid immersion terahertz imaging with sub-wavelength resolution // Applied Physics Letters 2017. V. 110, No. 22, P. 221109. [CrossRef] [Google Scholar]
  6. Yakovlev, E. V. et al. Non-Destructive Evaluation of Polymer Composite Materials at the Manufacturing Stage Using Terahertz Pulsed Spectroscopy // IEEE Transactions on Terahertz Science and Technology 2015. V. 5, No. 5, P. 810–816. [CrossRef] [Google Scholar]
  7. Dolganova, I. N. et al. The role of scattering in quasi-ordered structures for terahertz imaging: local order can increase an image quality // IEEE Transactions on Terahertz Science and Technology 2018. V. 8, No. 4, P. 403–409. [CrossRef] [Google Scholar]
  8. Tuchin, V. V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics 2015. 3rd ed. Bellingham. [Google Scholar]
  9. Stamnes, K. et al. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media // Applied Optics 1988. V. 27, No. 12, P. 2502–2509. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  10. Waterman, P. Matrix formulation of electromagnetic scattering // Proc. IEEE 1965. V. 53, No. 8, P. 805–812. [CrossRef] [Google Scholar]
  11. Taylor, A. H. The measurement of diffuse reflection factors and a new absolute reflectometer, // J. Opt. Soc. Amer. 1920. V. 115, No. 19, P. 9–23. [CrossRef] [Google Scholar]
  12. Zaytsev, K. I. et al. Accuracy of sample material parameters reconstruction using terahertz pulsed spectroscopy // Journal of Applied Physics 2014. V. 115, No. 19, P. 193105. [NASA ADS] [CrossRef] [Google Scholar]
  13. Zaytsev, K. I. et al. Invariant embedding technique for medium permittivity profile reconstruction using terahertz time-domain spectroscopy // Optical Engineering 2013. V. 52, No. 6, P. 068203. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.