Open Access
EPJ Web Conf.
Volume 195, 2018
3rd International Conference “Terahertz and Microwave Radiation: Generation, Detection and Applications” (TERA-2018)
Article Number 09003
Number of page(s) 2
Section Systems of Security and Non-Destructive Control Using THz and MW Radiation. Remote Sensing with THz Radiation. Communication in THz Frequency Range
Published online 23 November 2018
  1. Lee, Y.-S. Principles of Terahertz Science and Technology // Springer, New York, NY, USA, 2009. [Google Scholar]
  2. Dolganova, I.N., Zaytsev, K.I., Metelkina, A.A. Karasik, V.E., Yurchenko, S.O., A hybrid continuous-wave tehahertz imaging system // Review of Scientific Instruments, 2015, V. 86, No. 11, P. 113704. [CrossRef] [Google Scholar]
  3. Dolganova, I.N., Zaytsev, K.I., Yurchenko, S.O., Karasik, V.E., Tuchin V.V., The Role of Scattering in Quasi-Ordered Structures for Terahertz Imaging: Local Order Can Increase an Image Quality // IEEE Transactions on Terahertz science and Technology, 2018, V. 8, No. 4, PP. 403–409. [CrossRef] [Google Scholar]
  4. Zaytsev, K.I., Kudrin, K.G., Karasik, V.E, Reshetov, I.V., Yurchenko, S.O., In vivo terahertz spectroscopy of pigmentary skin nevi: Pilot study of non-invasive early diagnosis of dysplasia // Applied Physics Letters, 2015, V. 106, P. 053702. [CrossRef] [Google Scholar]
  5. Zaytsev, K.I., Gavdush, A.A., Chernomyrdin, N.V., Yurchenko, S.O., Highly Accurate in Vivo Terahertz Spectroscopy of Healthy Skin: Variation of Refractive Index and Absorption Coefficient Along the Human Body // IEEE Transactions on Terahertz science and Technology, 2015, V. 5, No. 5, P. 817–827. [NASA ADS] [CrossRef] [Google Scholar]
  6. Chernomyrdin, N.V. Kucheryavenko, A.S. Kolontaeva, G.S., Katyba, G.M., Dolganova, I.N., Karalkin, P.A., Ponomarev, D.S., Kurlov, V.N., Reshetov, I.V., Skorobogatiy, M., Tuchin, V.V., Zaytsev, K.I., Reflection-mode continuous-wave 0.15lambda-resolution terahertz solid immersion microscopy of soft biological tissues // Applied Physics Letters, 2018, V.113, No. 11, P. 111102. [CrossRef] [Google Scholar]
  7. Chernomyrdin, V.N., Gavdush; A.A., Beshplav, S.-I.T., Malakhov, K.M., Kucheryavenko, A.S., Katyba, G.M., Dolganova, I.N., Goryaynov, S.A., Karasik, V.E., Spektor, I.E., Kurlov, V.N., Yurchenko, S.O., Komandin, G.A., Pota-pov, A.A., Tuchin, V.V., Zaytsev, K.I., In vitro terahertz spec-troscopy of gelatin-embedded human brain tumors: a pilot study // Proceedings of SPIE, 2018, V. 10716, P. 107160S [Google Scholar]
  8. Yakovlev, E.V., Zaytsev, K.I., Dolganova, I.N., Yurchenko, S.O. Non-Destructive Evaluation of Polymer Composite Materials at the Manufacturing Stage Using Terahertz Pulsed Spectroscopy // IEEE Transactions on Terahertz science and Technology, 2015, V.5, No. 5, P. 810–816. [CrossRef] [Google Scholar]
  9. Bowden, B., Harrington, J.A, Mitrohanov O., Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings // Journal of Applied Physics, 2008. V. 93, P. 093110. [CrossRef] [Google Scholar]
  10. Wang, K., Mittleman D.M., Metal wires for te-rahertz wave guiding // Nature, 2004, V. 432, P. 376. [CrossRef] [PubMed] [Google Scholar]
  11. Chen, L.-J., Chen, H-.W., Kao, T.-F., Lu, J.-Y., Sun, C.-K., Low-loss subwavelength plastic fiber for terahertz waveguiding // Optics Express, 2006, V. 31, No. 3, P. 308–310. [Google Scholar]
  12. Hassani, A., Dupuis, A. and Skorobogatiy, M., Low loss porous terahertz fibers containing multiple subwave-length holes // Applied Physics Letters, 2008, V. 92, P. 071101. [CrossRef] [Google Scholar]
  13. Ma, T., Guerboukha, H., Girard, M., Squires, A., Lewis, R., Skorobogatiy, M., 3D Printed Hollow-Core Te-rahertz Optical Waveguides with Hyperuniform Disordered Dielectric Reflectors // mAdvanced Optical Materials, 2016, V. 4, No. 12, P. 2085. [CrossRef] [Google Scholar]
  14. Antonov, P.I., Kurlov, V.N., A review of developments in shaped crystal growth of sapphire by the Stepanov and related techniques // Progress in Crystal Growth and Characterization of Materials, 2002, V. 44, No. 2, P. 63–122. [CrossRef] [Google Scholar]
  15. Abrosimov, N.V., Kurlov, V.N., Rossolenko, S.N., Automated control of czochralski and shaped crystal growth processes using weighing techniques // Progress in Crystal Growth and Characterization of Materials, 2003, V. 46, No. 1–2, P. 1–57. [CrossRef] [Google Scholar]
  16. Katyba, G.M., Zaytsev, K.I., Dolganova, I.N., Shikunova, I.A., Chernomyrdin, N.V., Yurchenko, S.O., Komandin, G.A., Reshotov, I.V., Nesvizhevsky, V.V. and Kurlov, V.N., Sapphire shaped crystal for waveguiding, sensing and exposure applications // Progress in Crystal Growth and Characterization of Materials (accepted, 2018) [Google Scholar]
  17. Zaytsev K.I., Katyba G.M., Kurlov V.N., Shikunova I.A., Karasik V.E., Yurchenko S.O., Terahertz Photonic Crystal Waveguides Based on Sapphire Shaped Crystals // IEEE Transactions on Terahertz science and Technology, 2016. V.6, No. 4, P. 576–582. [CrossRef] [Google Scholar]
  18. Katyba G.M., Zaytsev K.I., Chernomyrdin N.V., Shikunova I.A., Komandin G.A., Anzin V.B., Lebedev S.P., Spektor I.E., Karasik V.E., Yurchenko S.O., Reshetov I.V., Skorobogatiy M., Kurlov V.N. and Skorobogatiy M., Sapphire photonic crystal waveguide for terahertz sensing in aggressive environments // Advanced Optics Materials, 2018, DOI: 10.1002/adom.201800573. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.