Open Access
Issue
EPJ Web Conf.
Volume 198, 2019
Quantum Technology International Conference 2018 (QTech 2018)
Article Number 00012
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/201919800012
Published online 15 January 2019
  1. M. Planat and Z. Gedik, Magic informationally complete POVMs with permutations, R. Soc. open sci. 4 170387 (2017). [CrossRef] [PubMed] [Google Scholar]
  2. M. Planat, The Poincaré half-plane for informationally complete POVMs, Entropy 20 16 (2018). [CrossRef] [Google Scholar]
  3. M. Planat, R. Aschheim, M. M. Amaral and K. Irwin, arXiv 1802.04196 (quant-ph). [Google Scholar]
  4. M. Planat, R. Aschheim, M. M. Amaral and K. Irwin, arXiv1808.06831 (quant-ph). [Google Scholar]
  5. C. Maclachlan and A. M. Reid, The arithmetic of hyperbolic 3-manifolds (Springer, New York, 2002). [Google Scholar]
  6. W. P. Thurston, Three-dimensional geometry and topology (vol. 1), (Princeton University Press, Princeton, 1997). [CrossRef] [Google Scholar]
  7. C. C. Adams, The knot book, An elementary introduction to the mathematical theory of knots (W. H. Freeman and Co, New York, 1994). [Google Scholar]
  8. M. D. Baker and A. W. Reid, Congruence link complements-a 3-dimensional Rademacher conjecture, Proc. of the 66th Birthday Conference for Joachim Schwermer (2016). [Google Scholar]
  9. M. Görner, Visualizing Regular Tesselations: Principal Congruence Links and Equivariant Morphisms from Surfaces to 3-Manifolds, Thesis (2011), available online at https://scholar.google.fr. [Google Scholar]
  10. M. Planat and R. Ul Haq, The magic of universal quantum computing with permutations, Advances in mathematical physics 217, ID 5287862 (2017) 9 pp. [Google Scholar]
  11. Chris A. Fuchs, On the quantumness of a Hibert space, Quant. Inf. Comp. 4 467–478 (2004). [Google Scholar]
  12. M. Appleby, T. Y. Chien, S. Flammia and S. Waldron, Constructing exact symmetric informationally complete measurements from numerical solutions, Preprint 1703.05981 [quant-ph]. [Google Scholar]
  13. F. Grunewald and J. Schwermer, Subgroups of Bianchi groups and arithmetic quotients of hyperbolic 3-space, Trans. Amer. Math. Soc. 335 47–78 (1993). [CrossRef] [Google Scholar]
  14. W. Bosma, J. J. Cannon, C. Fieker, A. Steel (eds), Handbook of Magma functions, Edition 2.23 (2017), 5914 pp. [Google Scholar]
  15. M. Culler, N. M. Dunfield, M. Goerner, and J. R. Weeks, SnapPy, a computer program for studying the geometry and topology of 3-manifolds, http://snappy.computop.org. [Google Scholar]
  16. A. D. Mednykh, A new method for counting coverings over manifold with finitely generated fundamental group, Dokl. Math. 74 498–502 (2006). [CrossRef] [Google Scholar]
  17. C. M. Gordon, Dehn filling: a survey, Knot Theory, Banach Center Publ. 42 129–144, Polish Acad. Sci., Warsaw (1998). [CrossRef] [Google Scholar]
  18. B. Martelli, C. Petronio and F. Roukema, Exceptional Dehn surgery on the minimally twisted five-chain link, Comm. Anal. Geom. 22 689–735 (2014). [CrossRef] [Google Scholar]
  19. M. D. Baker, M. Goerner and A. W. Reid, All principal congruence link groups, arXiv 1802.01275 [math.GT]. [Google Scholar]
  20. http://www.unhyperbolic.org/prinCong/ [Google Scholar]
  21. C. Pommerenke and M. Toro, Free subgroups of the parametrized modular group, Rev. Colomb. Matem. 49 269–279 (2015). [CrossRef] [Google Scholar]
  22. S. Vijay and L. Fu, A generalization of non-abelian anyons in three dimensions, arXiv 1706.07070 (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.