Open Access
Issue
EPJ Web Conf.
Volume 198, 2019
Quantum Technology International Conference 2018 (QTech 2018)
Article Number 00011
Number of page(s) 9
DOI https://doi.org/10.1051/epjconf/201919800011
Published online 15 January 2019
  1. Rabi, I. I. “Space quantization in a gyrating magnetic field.” Physical Review, 51 (1937) 652. [CrossRef] [Google Scholar]
  2. Dicke, R. H. “Coherence in spontaneous radiation processes.” Physical Review, 93 (1954) 99. [CrossRef] [Google Scholar]
  3. Dimer, F., Estienne, B., Parkins, A. S., & Carmichael, H. J. (2007). Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system. Physical Review A, 75(1), 013804. [Google Scholar]
  4. Mezzacapo, A., Las Heras, U., Pedernales, J. S., DiCarlo, L., Solano, E., & Lamata, L.(2014). Digital quantum Rabi and Dicke models in superconducting circuits. Scientific reports, 4, 7482. [CrossRef] [PubMed] [Google Scholar]
  5. Zhiqiang, Z., Lee, C. H., Kumar, R., Arnold, K. J., Masson, S. J., Parkins, A. S., & Barrett, M. D. (2017). Nonequilibrium phase transition in a spin-1 Dicke model. Optica, 4(4), 424–429. [Google Scholar]
  6. M. H. Devoret and R. J. Schoelkopf, “Superconducting Circuits for Quantum Information: An Outlook.” Science 339, 1169 (2013). [Google Scholar]
  7. Cirac, J. I., & Zoller, P. (1995). “Quantum computations with cold trapped ions.” Physical review letters, 74(20), 4091. [Google Scholar]
  8. Yoshihara, F., Fuse, T., Ashhab, S., Kakuyanagi, K., Saito, S., & Semba, K. (2017). “Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime.” Nature Physics, 13(1), 44–47. [Google Scholar]
  9. Le Boité, A., Hwang, M. J., Nha, H., & Plenio, M. B. (2016). “Fate of photon blockade in the deep strong-coupling regime.” Physical Review A, 94(3), 033827. [Google Scholar]
  10. Aharonovich, I., & Pe'er, A. (2016). “Coherent amplification of ultrafast molecular dynamics in an optical oscillator.” Physical review letters, 116(7), 073603. [Google Scholar]
  11. Carmichael, H. J., Gardiner, C. W., & Walls, D. F. (1973). “Higher order corrections to the Dicke superradiant phase transition.” Physics Letters A, 46(1), 47–48. [Google Scholar]
  12. Hepp, K., & Lieb, E. H. (1973). “On the superradiant phase transition for molecules in a quantized radiation field: The Dicke Maser model.” Annals of Physics, 76(2), 360–404. [Google Scholar]
  13. Nataf, P., & Ciuti, C. (2010). “No-go theorem for superradiant quantum phase transitions in cavity QED and counter-example in circuit QED.” Nature communications, 1, 72. [CrossRef] [PubMed] [Google Scholar]
  14. Baden, M. P., Arnold, K. J., Grimsmo, A. L., Parkins, S., & Barrett, M. D. (2014). “Realization of the Dicke model using cavity-assisted Raman transitions.” Physical review letters, 113(2), 020408. [CrossRef] [PubMed] [Google Scholar]
  15. Viehmann, O., von Delft, J., & Marquardt, F. (2011). “Superradiant phase transitions and the standard description of circuit QED.” Physical review letters, 107(11), 113602; Viehmann, O., von Delft, J., & Marquardt, F. (2012). Reply to Comment on“ Superradiant Phase Transitions and the Standard Description of Circuit QED”. Ciuti, C., & Nataf, P. (2012). “Comment on Superradiant phase transitions and the standard description of circuit QED”. Physical review letters, 109(17), 179301. [CrossRef] [PubMed] [Google Scholar]
  16. Nataf, P., & Ciuti, C. (2010). “Is there a no-go theorem for superradiant quantum phase transitions in cavity and circuit QED?” Nat. Commun. 1 72 [CrossRef] [PubMed] [Google Scholar]
  17. Rzaewski, K., & Wódkiewicz, K. (1991). “Stability of matter interacting with photons.” Physical Review A, 43(1), 593. [Google Scholar]
  18. Bamba, M., & Ogawa, T. (2014). “Stability of polarizable materials against superradiant phase transition.” Physical Review A, 90(6), 063825. [Google Scholar]
  19. De Liberato, S. (2014). “Light-matter decoupling in the deep strong coupling regime: The breakdown of the Purcell effect.” Physical review letters, 112(1), 016401. [CrossRef] [PubMed] [Google Scholar]
  20. Bialynicki-Birula, I., & Rza»ewski, K. (1979). “No-go theorem concerning the superradiant phase transition in atomic systems.” Physical Review A, 19(1), 301. [Google Scholar]
  21. Dicke, R. H. (1954). “ Coherence in spontaneous radiation processes.” Physical Review, 93(1), 99. [CrossRef] [Google Scholar]
  22. Garbe, L., Egusquiza, I. L., Solano, E., Ciuti, C., Coudreau, T., Milman, P., & Felicetti, S. (2017). “Superradiant phase transition in the ultrastrong-coupling regime of the two-photon Dicke model.” Physical Review A, 95(5), 053854. [Google Scholar]
  23. Polkovnikov, A. (2010). “Phase space representation of quantum dynamics.” Annals of Physics, 325(8), 1790–1852. [Google Scholar]
  24. Lambert, N., Emary, C., & Brandes, T. (2004). “Entanglement and the phase transition in singlemode superradiance.” Physical review letters, 92(7), 073602. [CrossRef] [PubMed] [Google Scholar]
  25. Syljuåsen, O. F. (2003). “Entanglement and spontaneous symmetry breaking in quantum spin models.” Physical Review A, 68(6), 060301. [Google Scholar]
  26. Yao, H., & Qi, X. L. (2010). “Entanglement entropy and entanglement spectrum of the Kitaev model.” Physical review letters, 105(8), 080501. [CrossRef] [PubMed] [Google Scholar]
  27. Einstein, A., Podolsky, B. & Rosen, N. “Can quantum mechanical description of physical reality be considered complete?” Phys. Rev 47, 777 (1935). [Google Scholar]
  28. Wootters, W. K. “Entanglement of formation of an arbitrary state of two qubits.” Phys. Rev. Lett 80, 2245 (1998). [Google Scholar]
  29. Vidal, G. & Werner, R. F. “Computable measure of entanglement.” Phys. Rev. A 65, 032314 (2002). [Google Scholar]
  30. Vedral, V., Plenio, M. B., Jacobs, K. & Knight, P. L. “Statistical inference, distinguishability of quantum states, and quantum entanglement.” Phys. Rev. A 56, 4452 (1997). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.