Open Access
Issue
EPJ Web Conf.
Volume 210, 2019
Ultra High Energy Cosmic Rays 2018 (UHECR 2018)
Article Number 02001
Number of page(s) 10
Section Hadronic Models
DOI https://doi.org/10.1051/epjconf/201921002001
Published online 17 May 2019
  1. M. Nagano and A.A. Watson, Observations and implications of the ultrahigh-energy cosmic rays, Rev. Mod. Phys. 72, 689 (2000). [Google Scholar]
  2. D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz and T. Thouw, CORSIKA: A Monte Carlo code to simulate extensive air showers, Tech. Rep. FZKA-6019, Forschungszentrum Karlsruhe, 1998. [Google Scholar]
  3. S. J. Sciutto, AIRES: A System for air shower simulations. User’s guide and reference manual. Version 2.2.0, astro-ph/9911331. [Google Scholar]
  4. H.-J. Drescher and G. R. Farrar, Air shower simulations in a hybrid approach using cascade equations, Phys. Rev. D 67, 116001 (2003). [Google Scholar]
  5. T. Bergmann, R. Engel, D. Heck, N. N. Kalmykov, S. Ostapchenko, T. Pierog, T. Thouw and K. Werner, One-dimensional Hybrid Approach to Extensive Air Shower Simulation, Astropart. Phys. 26, 420 (2007). [CrossRef] [Google Scholar]
  6. G. Antchev et al. (TOTEM Collaboration), First measurement of the total proton-proton cross section at the LHC energy of Formula TeV, Europhys. Lett. 96, 21002 (2011). [Google Scholar]
  7. G. Antchev et al. (TOTEM Collaboration), Measurement of proton-proton elastic scattering and total cross-section at Formula TeV, Europhys. Lett. 101, 21002 (2013). [Google Scholar]
  8. G. Antchev et al. (TOTEM Collaboration), Luminosity-independent measurements of total, elastic and inelastic cross-sections at Formula TeV, Europhys. Lett. 101, 21004 (2013). [Google Scholar]
  9. G. Antchev et al. (TOTEM Collaboration), Luminosity-Independent Measurement of the Proton-Proton Total Cross Section at Formula TeV, Phys. Rev. Lett. 111, 012001 (2013). [CrossRef] [PubMed] [Google Scholar]
  10. G. Antchev et al. (TOTEM Collaboration), First measurement of elastic, inelastic and total crosssection at Formula TeV by TOTEM and overview of cross-section data at LHC energies, arXiv: 1712.06153[hep-ex]. [Google Scholar]
  11. G. Aad et al. (ATLAS Collaboration), Measurement of the total cross section from elastic scattering in pp collisions at Formula TeV with the ATLAS detector, Nucl. Phys. B 889, 486 (2014). [CrossRef] [Google Scholar]
  12. M. Aaboud et al. (ATLAS Collaboration), Measurement of the total cross section from elastic scattering in pp collisions at Formula TeV with the ATLAS detector, Phys. Lett. B 761, 158 (2016). [CrossRef] [Google Scholar]
  13. K. Werner, F.-M. Liu and T. Pierog, Parton ladder splitting and the rapidity dependence of transverse momentum spectra in deuteron-gold collisions at RHIC, Phys. Rev. C 74, 044902 (2006). [Google Scholar]
  14. T. Pierog, Iu. Karpenko, J. M. Katzy, E. Yatsenko and K. Werner, EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider, Phys. Rev. C 92, 034906 (2015). [Google Scholar]
  15. S. Ostapchenko, QGSJET-II: Towards reliable description of very high energy hadronic interactions, Nucl. Phys. Proc. Suppl. 151, 143 (2006). [CrossRef] [Google Scholar]
  16. S. Ostapchenko, Nonlinear screening effects in high energy hadronic interactions, Phys. Rev. D 74, 014026 (2006). [Google Scholar]
  17. S. Ostapchenko, Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: QGSJET-II model, Phys. Rev. D 83, 014018 (2011). [Google Scholar]
  18. S. Ostapchenko, QGSJET-II: physics, recent improvements, and results for air showers, EPJ Web Conf. 52, 02001 (2013). [CrossRef] [Google Scholar]
  19. R. S. Fletcher, T. K. Gaisser, P. Lipari and T. Stanev, SIBYLL: An Event generator for simulation of highenergy cosmic ray cascades, Phys. Rev. D 50, 5710 (1994). [Google Scholar]
  20. E.-J. Ahn, R. Engel, T. K. Gaisser, P. Lipari and T. Stanev, Cosmic ray interaction event generator SIBYLL 2.1, Phys. Rev. D 80, 094003 (2009). [Google Scholar]
  21. F. Riehn, R. Engel, A. Fedynitch, T. K. Gaisser and T. Stanev, A new version of the event generator Sibyll, Proc. Sci., ICRC2015 2016), 558; arXiv:1510.00568 [hep-ph]. [Google Scholar]
  22. F. Riehn, H. P. Dembinski, R. Engel, A. Fedynitch, T. K. Gaisser and T. Stanev, The hadronic interaction model SIBYLL 2.3c and Feynman scaling, Proc. Sci., ICRC2017 2018), 301; arXiv:1709.07227 [hep-ph]. [Google Scholar]
  23. A. Aab et al. (Pierre Auger Collaboration), Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 1017.8 eV, Phys. Rev. D 90, 122005 (2014). [Google Scholar]
  24. S. Ostapchenko, M. Bleicher, T. Pierog and K. Werner, Constraining high energy interaction mechanisms by studying forward hadron production at the LHC, Phys. Rev. D 94, 114026 (2016). [Google Scholar]
  25. T. K. Gaisser and F. Halzen, Soft Hard Scattering in the TeV Range, Phys. Rev. Lett. 54, 1754 (1985). [CrossRef] [PubMed] [Google Scholar]
  26. L. Durand and H. Pi, Semihard QCD and High-energy pp and Formula Scattering, Phys. Rev. D 40, 1436 (1989). [Google Scholar]
  27. X.-N. Wang, pQCD based approach to parton production and equilibration in high-energy nuclear collisions, Phys. Rept. 280, 287 (1997). [CrossRef] [Google Scholar]
  28. R. Ulrich, R. Engel and M. Unger, Hadronic Multiparticle Production at Ultra-High Energies and Extensive Air Showers, Phys. Rev. D 83, 054026 (2011). [Google Scholar]
  29. S. Ostapchenko and M. Bleicher, Constraining pion interactions at very high energies by cosmic ray data, Phys. Rev. D 93, 051501 (2016). [Google Scholar]
  30. T. Pierog, Open issues in hadronic interactions for air showers, EPJ Web Conf. 145, 18002 (2017). [CrossRef] [Google Scholar]
  31. A. Aab et al. (Pierre Auger Collaboration), Muonsin air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth, Phys. Rev. D 90, 0120122014); ibid., 90, 039904 2014); ibid., 92, 019903 (2015). [Google Scholar]
  32. A. Aduszkiewicz et al. (NA61/SHINE Collaboration), Measurement of meson resonance production in Formula interactions at SPS energies, Eur. Phys. J. C 77, 626 (2017). [CrossRef] [EDP Sciences] [Google Scholar]
  33. O. Adriani et al. (LHCf Collaboration), Measurement of zero degree single photon energy spectra for Formula TeV proton-proton collisions at LHC, Phys. Lett. B 703, 128 (2011). [Google Scholar]
  34. O. Adriani et al. (LHCf Collaboration), Measurement of forward neutral pion transverse momentum spectra for Formula TeV proton-proton collisions at LHC, Phys. Rev. D 86, 092001 (2012). [Google Scholar]
  35. O. Adriani et al. (LHCf Collaboration), Transversemomentum distribution and nuclear modification factor for neutral pions in the forward-rapidity region in proton-lead collisions at Formula TeV, Phys. Rev. C 89, 065209 (2014). [Google Scholar]
  36. O. Adriani et al. (LHCf Collaboration), Measurement of very forward neutron energy spectra for 7 TeV proton-proton collisions at the Large Hadron Collider, Phys. Lett. B 750, 360 (2015). [Google Scholar]
  37. O. Adriani et al. (LHCf Collaboration), Measurements of longitudinal and transverse momentum distributions for neutral pions in the forward-rapidity region with the LHCf detector, Phys. Rev. D 94, 032007 (2016). [Google Scholar]
  38. O. Adriani et al. (LHCf Collaboration), Measurement of inclusive forward neutron production cross section in proton-proton collisions at Formula TeV with the LHCf Arm2 detector, JHEP 1811, 073 (2018). [CrossRef] [Google Scholar]
  39. N. M. Agababyan et al. (EHS-NA22 Collaboration), Inclusive production of vector mesons in π+ p interactions at 250 GeV/c, Z. Phys. C46, 387 (1990). [Google Scholar]
  40. A. B. Kaidalov, V. A. Khoze, A. D. Martin and M. G. Ryskin, Leading neutron spectra, Eur. Phys. J. C 47, 385 (2006). [CrossRef] [EDP Sciences] [Google Scholar]
  41. B. Z. Kopeliovich, I. K. Potashnikova, B. Povh and I. Schmidt, Pion structure function at small x from DIS data, Phys. Rev. D 85, 114025 (2012). [Google Scholar]
  42. V. A. Khoze, A. D. Martin and M. G. Ryskin, Total π+p cross section extracted from the leading neutron spectra at the LHC, Phys. Rev. D 96, 034018 (2017). [Google Scholar]
  43. A. Aab et al. (Pierre Auger Collaboration), Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory, Phys. Rev. Lett. 117, 192001 (2016). [CrossRef] [PubMed] [Google Scholar]
  44. W. Hanlon et al. for the Pierre Auger Collaboration and the Telescope Array Collaboration, Report of the Working Group on the Mass Composition of Ultrahigh Energy Cosmic Rays, JPS Conf. Proc. 19, 011013 (2018). [Google Scholar]
  45. A. Yushkov et al. for the Pierre Auger Collaboration and the Telescope Array Collaboration, Depth of maximum of air shower profiles: testing the compatibility of measurements, these proceedings. [Google Scholar]
  46. T. Pierog and K. Werner, Muon Production in Extended Air Shower Simulations, Phys. Rev. Lett. 101, 171101 (2008). [CrossRef] [PubMed] [Google Scholar]
  47. S. Ostapchenko, LHC data on inelastic diffraction and uncertainties in the predictions for longitudinal extensive air shower development, Phys. Rev. D 89, 074009 (2014). [Google Scholar]
  48. N. N. Kalmykov and S. S. Ostapchenko, The nucleus-nucleus interaction, nuclear fragmentation, and fluctuations of extensive air showers, Phys. Atom. Nucl. 56, 346 (1993). [Google Scholar]
  49. N. N. Kalmykov, S. S. Ostapchenko and A. I. Pavlov, EAS and a quark gluon string model with jets, Bull. Russ. Acad. Sci. Phys. 58, 1966 (1994). [Google Scholar]
  50. N. N. Kalmykov, S. S. Ostapchenko and A. I. Pavlov, Quark-Gluon String Model and EAS Simulation Problems at Ultra-High Energies, Nucl. Phys. Proc. Suppl. 52B, 17 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  51. K.-H. Kampert and M. Unger, Measurements of the Cosmic Ray Composition with Air Shower Experiments, Astropart. Phys. 35, 660 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  52. R. J. Glauber, High-energy collision theory, in: Lectures in theoretical physics, Ed. by W. E. Brittin and L. G. Dunham, Interscience Publishers, New York, 1959, vol. 1, p. 315. [Google Scholar]
  53. V. N. Gribov, Glauber corrections and the interaction between high-energy hadrons and nuclei, Sov. Phys. JETP 29, 483 (1969). [Google Scholar]
  54. J. Engel, T. K. Gaisser, T. Stanev and P. Lipari, Nucleus-nucleus collisions and interpretation of cosmic ray cascades, Phys. Rev. D 46, 5013 (1992). [Google Scholar]
  55. S. Fredriksson, G. Eilam, G. Berlad and L. Bergström, High-energy Collisions With Atomic Nuclei. Part 1, Phys. Rept. 144, 187 (1987). [CrossRef] [Google Scholar]
  56. T. Pierog, private communications. [Google Scholar]
  57. R. Aloisio, V. Berezinsky, P. Blasi and S. Ostapchenko, Signatures of the transition from Galactic to extragalactic cosmic rays, Phys. Rev. D 77, 025007 (2008). [CrossRef] [Google Scholar]
  58. A. Aab et al. (Pierre Auger Collaboration), Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events, Phys. Rev. D 91, 032003 2015); ibid., 91, 059901 (2015). [CrossRef] [Google Scholar]
  59. R. U. Abbasi et al. (Telescope Array Collaboration), Study of muons from ultrahigh energy cosmic ray air showers measured with the Telescope Array experiment, Phys. Rev. D 98, 022002 (2018). [CrossRef] [Google Scholar]
  60. S. Ostapchenko, Models for cosmic ray interactions, Czech. J. Phys. 56, A149 (2006). [CrossRef] [Google Scholar]
  61. S. Ostapchenko, LHC results and hadronic interaction models, eConf C16-09-04.3; arXiv:1612.09461 [astro-ph.HE]. [Google Scholar]
  62. W. Heitler, The Quantum Theory of Radiation, third ed., Oxford University Press, London, 1954, p. 386. [Google Scholar]
  63. J. Matthews, A Heitler model of extensive air showers, Astropart. Phys. 22, 387 (2005). [CrossRef] [Google Scholar]
  64. W. D. Apel et al. (KASCADE Collaboration), Comparison of measured and simulated lateral distributions for electrons and muons with KASCADE, Astropart. Phys. 24, 467 (2006). [CrossRef] [Google Scholar]
  65. W. D. Apel et al. (KASCADE-Grande Collaboration), Lateral distributions of EAS muons (Εμ>800 MeV) measured with the KASCADE-Grande Muon Tracking Detector in the primary energy range 1016-1017 eV, Astropart. Phys. 65, 55 (2015). [CrossRef] [Google Scholar]
  66. J. G. Gonzalez for the ICECUBE Collaboration, Measurement of the Muon Content of Air Showers with IceTop, J. Phys. Conf. Ser. 718, 052017 (2016). [CrossRef] [Google Scholar]
  67. K. Andeen for the IceCube Collaboration, Latest Cosmic Ray Results from IceTop and IceCube, these proceedings. [Google Scholar]
  68. L. Cazon, R. Conceição, M. Pimenta and E. Santos, A model for the transport of muons in extensive air showers, Astropart. Phys. 36, 211 (2012). [CrossRef] [Google Scholar]
  69. H.-J. Drescher, M. Bleicher, S. Soff and H. Stoecker, Model dependence of lateral distribution functions of high energy cosmic ray air showers, Astropart. Phys. 21, 87 (2004). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.