Open Access
Issue
EPJ Web Conf.
Volume 213, 2019
EFM18 – Experimental Fluid Mechanics 2018
Article Number 02103
Number of page(s) 5
Section Contributions
DOI https://doi.org/10.1051/epjconf/201921302103
Published online 28 June 2019
  1. V. Meshini, M. De Tullio, G. Querzoli, R. Verzicco. Flow structure in healthy and pathological left ventricles with natural and prosthetic mitral valves. J. Fluid Mech., 834, 271-307. (2018). [Google Scholar]
  2. Y. Alemu, D. Bluestein. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artificial organs, 31, 677-688. (2004). [Google Scholar]
  3. C. Nyobe, J.A. Funder, M.H. Smerup, H. Nygaard, J.M. Hasenkam. Turbulent stress measurement downstream of three bileaflet heart valve designs in pigs. EJCTS, 29, 1008-1013. (2006). [Google Scholar]
  4. W.C. Roberts, J.M. Ko. Some observations on mitral and aortic valve disease. Proc (Bayl Univ Med Cent), 21, 282-299. (2008). [Google Scholar]
  5. Y. Alemu, G. Girdhar, M. Xenos, J. Sheriff, J. Jesty, S. Einav, D. Bluestein. Design optimization of a mechanical heart valve for reducing valve thrombogenicity – a case study with ATS valve. ASAIO, 56, 389-96. (2010). [CrossRef] [Google Scholar]
  6. M. De Tullio, A. Cristallo, E. Balaras, R. Verzicco. Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical valve. J. Fluid Mech., 662, 259-290. (2009). [Google Scholar]
  7. F. Khalili. Hemodynamics of a bileaflet mechanical heart valve with different levels of dysfunction. JABB. 2, 5. (2017). [CrossRef] [Google Scholar]
  8. D. Bluestein, Y.M. Li, I.B. Krunkenkamp. Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. Biomech., 35, 1533-1540. (2002). [CrossRef] [PubMed] [Google Scholar]
  9. M. Nobili, U. Morbiducci, R. Ponzini, C. Del Gaudio, A. Balducci, M. Grigioni, F.M. Montevecchi, A. Redaelli. Numerical simulation of a bileaflet prosthetic heart valve using a fluid-structure interaction approach. J. Biomech., 41, 2539-2550. (2008). [CrossRef] [PubMed] [Google Scholar]
  10. M. Lei, A.A. Van Steenhoven, D.H. Van Campen. Experimental and numerical analyses of the steady flow field around an aortic Björk-Shiley standard valve prostheses. J. Biomech., 25, 213-222. (1992). [CrossRef] [PubMed] [Google Scholar]
  11. M.K. King. Computational and experimental studies of flow through a bileaflet mechanical heart valve. Disertation thesis. University of Leeds, UK. (1994). [Google Scholar]
  12. Y.H. KUAN. 3-dimensional numerical and experimental studies to model artificial heart valves hemodynamics. Disertation thesis. National University of Singapore. (2014). [Google Scholar]
  13. H.H. Yeh, D. Grecov, S. Karri. Computational modelling of bileaflet mechanical valves using fluid-structure interaction approach. JMBE, 34, 482-486. (2014). [Google Scholar]
  14. V.T. Nguyen, Y.H. Kuan, P.Y. Chen, L. Ge, F. Sotiropoulos, A.P. Yoganathan, H.L. Leo. Experimentally validated hemodynamics simulations of mechanical heart valves in three dimensions. CVET, 3, 88-100. (2012). [Google Scholar]
  15. Sorin Bicarbon (LivaNova) product sheet. (online). (2018-9-9). Available from: http://www.livanova.sorin.com/products/cardiac-surgery/ [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.