Open Access
EPJ Web Conf.
Volume 213, 2019
EFM18 – Experimental Fluid Mechanics 2018
Article Number 02104
Number of page(s) 8
Section Contributions
Published online 28 June 2019
  1. S. Viazzo, S. Poncet, E. Serre, A. Randriamampianina, P. Bontoux. Flow, turbulence and combustión, 88, 63-75, (2012). [CrossRef] [Google Scholar]
  2. V. W. Ekman. On the Influence of the Earth's Rotation on Ocean-currents (1951). [Google Scholar]
  3. T. V. Kármán. Über laminare und turbulente Reibung. ZAMM Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1, 233-252, (1921). [Google Scholar]
  4. U. T. Bodewadt. Die Drehstromung über festem Grunde. ZAMM Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 20, 241-253, (1940). [CrossRef] [Google Scholar]
  5. N. H. Smith. Exploratory investigation of laminar-boundary-layer oscillations on a rotating disk. National Advisory Commitee for Aeronautics, (1947). [Google Scholar]
  6. A. J. Faller, R. E. Kaylor. Investigations of Stability and Transition in Rotating Boundary Layers. Dynamics of Fluids and Plasmas, 309, (1966). [Google Scholar]
  7. Y. Kohama. Study on boundary layertransitionofa rotating disk. Acta Mechanica, 50, 193-199, (1984). [Google Scholar]
  8. A. J. Faller. Large eddies in the atmospheric boundary layer and their possible role in the formation of cloud rows. Journal of the Atmospheric Sciences, 22,176-184,(1965). [Google Scholar]
  9. O. Savas. Circular waves on a stationary disk in rotating flow. Physics of Fluids, 26, 3445-3448, 1983. [CrossRef] [Google Scholar]
  10. S. Jarre, P. Le Gal, M. P. Chauve. Experimental study of rotating disk instability. I. natural flow: Physics of Fluids, 8, 496-508, (1996). [Google Scholar]
  11. A. J. Faller. Instability and transition of disturbed flow over a rotating disk. Journal of Fluid Mechanics, 230, 245-269, (1991). [Google Scholar]
  12. Y. K. Hwang, Y. Y. Lee. Theoretical flow instability of the Kármán boundary layer. KSME International Journal, 14, 358-368, (2000). [CrossRef] [Google Scholar]
  13. R. J. Lingwood. Absolute instability of the Ekman layer and related rotating flows. Journal ofFluid Mechanics, 331, 405-428, (1997). [CrossRef] [Google Scholar]
  14. G. N. Coleman, R. D. Sandberg. A primer on direct numerical simulation of turbulence-methods, procedures and guidelines, (2010). [Google Scholar]
  15. Ch. G. Speziale. Analytical Methods for the Development of Reynolds-Stress Closures in Turbulence. Annual Review of Fluid Mechanics, 23, 107-157, (1991). [Google Scholar]
  16. R. K. Avva, C. Smith, A. Singhal. Comparative study of high and low Reynolds number versions of k-epsilon models, 28th Aerospace Sciences Meeting, (1990). [Google Scholar]
  17. D. Wilcox. A half century historical review of the k-omega model. 29th Aerospace Sciences Meeting, (1990). [Google Scholar]
  18. F. Menter. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal. 32,1598-1605 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  19. Y. Zhiyin. Large-eddy simulation: Past, present and the future. Chinese Journal of Aeronautics, 28, 11-24, (2015). [CrossRef] [Google Scholar]
  20. K. Abe. A hybrid LES/RANS approach using an anisotropy-resolving algebraic turbulence model. International Journal of Heat and Fluid Flow, 26, 204-222, (2005). [Google Scholar]
  21. P. R. Spalart. Detached-Eddy Simulation. Annu. Rev. FluidMech., 41, 181-202, (2009). [NASA ADS] [CrossRef] [Google Scholar]
  22. P. R. Spalart. A young person's guide to Detached-Eddy simulation grids, (2001). [Google Scholar]
  23. F. R. Menter, Y. Egorov. The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description. Flow, Turbulence and Combustion, 85, 113-138, (2010). [CrossRef] [Google Scholar]
  24. J. W. Chew. Prediction of flow in rotating DISC systems using the k-e turbulence model. ASME 1984 International Gas Turbine Conference and Exhibit, (1984). [Google Scholar]
  25. J. W. Chew, C. M. Vaughan. Numerical predictions for the flow induced by an enclosed rotating disc. ASME 1988 International Gas Turbine and Aeroengine Congress and Exposition, (1988). [Google Scholar]
  26. L. Elena, R. Schiestel. Turbulence modeling of rotating confined flows. International Journal of Heat and Fluid Flow, 17, 283-289, (1996). [Google Scholar]
  27. S. Poncet, M. P. Chauve, R. Schiestel. Batchelor versus Stewartson flow structures in a rotor-stator cavity with throughflow. Physics of Fluids, 17, (2005). [CrossRef] [MathSciNet] [Google Scholar]
  28. S. Poncet, R. Da Soghe, B. Facchini. RANS Modeling of Flow in Rotating Cavity System. V European Conference on Computational Fluid Dynamics, (2010). [Google Scholar]
  29. W. Lo, C. W. Chen, C. A. Lin. Large eddy simulation of enclosed rotor-stator flow. Third Symposium on Turbulence and Shear Flow Phenomena, (2003). [Google Scholar]
  30. E. Tuliszka-Sznitko, A. Zielinski. DNS/LES of Transitional Flow in Rotating Cavity. International Journal of Transport Phenomena, 10, 223-234, (2008). [Google Scholar]
  31. L. Davidson. Large Eddy Simulations: howto evaluate resolution. Int. J. of Heat and Fluid Flow, 30, 1016-1025, (2009). [CrossRef] [Google Scholar]
  32. G. Gauthier, P. Gondret, M. Rabaud. Axisymmetric propagating vortices in the flow between a stationary and a rotating disk enclosed by a cylinder. Journal of FluidMechanics,386,105-126,(1999). [CrossRef] [Google Scholar]
  33. E. Séverac, S. Poncet, E. Serre, M.-P. Chauve. Large eddy simulation and measurements ofturbulent enclosed rotor-stator flows, Phys. Fluids, 19, (2007). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.