Open Access
Issue
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
Article Number 02001
Number of page(s) 8
Section T2 - Offline computing
DOI https://doi.org/10.1051/epjconf/201921402001
Published online 17 September 2019
  1. R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria (2017), https://www.R-project.org/ [Google Scholar]
  2. W. McKinney, Data Structures for Statistical Computing in Python, in Proceedings of the 9th Python in Science Conference, edited by S. van der Walt, J. Millman (2010) [Google Scholar]
  3. CMS collaboration, The CMS Experiment at the CERN LHC, JINST 3, S08004 (2008) [Google Scholar]
  4. R. Brun, F. Rademakers, ROOT: An object oriented data analysis framework, Nucl. Instrum. Meth. A389, 81 (1997) [Google Scholar]
  5. J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02, 057 (2014), 1307.6346 [Google Scholar]
  6. C. Bernet, Heppy: a python framework for high-energy physics data analysis, https://github.com/cbernet/heppy [Google Scholar]
  7. G. Petrucciani, A. Rizzi, C. Vuosalo, Mini-AOD: A New Analysis Data Format for CMS, J. Phys. Conf. Ser. 664, 072052 (2015), 1702.04685 [Google Scholar]
  8. A. Rizzi, G. Petrucciani, A further reduction in CMS event data for analysis: the NanoAOD format, CHEP 2018 [Google Scholar]
  9. T. Sakuma, H. Flaecher, D. Smith, Alternative angular variables for suppression of QCD multijet events in new physics searches with missing transverse momentum at the LHC, 1803.07942 (2018) [Google Scholar]
  10. T. Sakuma, GitHub repository of AlphaTwirl, https://github.com/alphatwirl/alphatwirl [Google Scholar]
  11. H. Wickham, The Split-Apply-Combine Strategy for Data Analysis, Journal of Statistical Software 40, 1 (2011) [Google Scholar]
  12. D. Sarkar, Lattice: Multivariate Data Visualization with R (Springer-Verlag, 2008), ISBN 978-0-387-75968-5 [CrossRef] [Google Scholar]
  13. H. Wickham, ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2009) [Google Scholar]
  14. M. Waskom, Seaborn, doi:10.5281/zenodo.592845 [Google Scholar]
  15. A. Lyon, Analysis of Experimental Particle Physics Data in R with the RootTreeToR Package, useR! 2007 [Google Scholar]
  16. C. Burr et al., root_pandas, doi:10.5281/zenodo.593933 [Google Scholar]
  17. H. Wickham, R. Francois, L. Henry, K. Muller, dplyr: A grammar of data manipulation, https://CRAN.R-project.org/package=dplyr [Google Scholar]
  18. E. Guiraud, A. Naumann, D. Piparo, RDataFrame, doi:10.5281/zenodo.260230 [Google Scholar]
  19. T. Sakuma, scribblers: a collection of framework independent producers of event attributes, doi:10.5281/zenodo.1797429 [Google Scholar]
  20. T.E. Oliphant, A Guide to NumPy (Trelgol Publishing, 2006) [Google Scholar]
  21. C.D. Jones, M. Paterno, J. Kowalkowski, L. Sexton-Kennedy, W. Tanenbaum, The new CMS Event Data Model and Framework, Proceedings, CHEP 2006 [Google Scholar]
  22. multiprocessing - Process-based parallelism, https://docs.python.org/3/library/multiprocessing.html [Google Scholar]
  23. D. Thain et al., Distributed computing in practice: the condor experience., Concurrency - Practice and Experience 17, 323 (2005) [CrossRef] [Google Scholar]
  24. S. Breeze, atsge: Alphatwirl tools to submit jobs to an SGE batch, https://pypi.org/project/atsge/0.1.8/ [Google Scholar]
  25. E. Gamma et al., Design patterns : elements of reusable object-oriented software (Addison-Wesley, 1994), ISBN 0-201-63361-2 [Google Scholar]
  26. T. Sakuma, atdelphes: AlphaTwirl framework for Delphes trees, doi:10.5281/zenodo.1843918 [Google Scholar]
  27. T. Sakuma, atcmsedm: AlphaTwirl framework for CMS EDM trees, doi:10.5281/zenodo.1843954 [Google Scholar]
  28. S. Breeze, atuproot: alphatwirl interface to process and read ROOT TTrees with uproot, https://pypi.org/project/atuproot/0.1.5/ [Google Scholar]
  29. J. Pivarski et al., uproot: ROOT I/O in pure Python and Numpy, doi:10.5281/zenodo.1745320 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.