Open Access
Issue
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
Article Number 02033
Number of page(s) 8
Section T2 - Offline computing
DOI https://doi.org/10.1051/epjconf/201921402033
Published online 17 September 2019
  1. M. Titov and L. Ropelewski, Micro-pattern gaseous detector technologies and RD51 Collaboration, Mod.Phys.Lett. A28 (2013), 1340022. dx.doi.org/10.1142/S0217732313400221. [CrossRef] [Google Scholar]
  2. R. De Oliveira, M. Maggi, A. Sharma, A novel fast timing micropattern gaseous detector: FTM., arXiv:1503.05330[physics.ins-det] (2015). https://arxiv.org/abs/1503.05330. [Google Scholar]
  3. T. Papaevangelou, etal., Fast Timing for High-Rate Environments with Micromegas, PJ Web Conf. 174 (2018) 02002. 10.1051/epjconf/201817402002. [CrossRef] [Google Scholar]
  4. M. Conti, State of the art and challenges of time-of-flight PET, Physica Medica 25 (2009) 1–11. dx.doi.org/10.1016/j.ejmp.2008.10.001. [CrossRef] [Google Scholar]
  5. T.K. Lewellen, Recent developments in PET detector technology, Phys. Med. Biol. 53 (2008) R287. dx.doi.org/10.1088/0031-9155/53/17/R01. [CrossRef] [PubMed] [Google Scholar]
  6. S. Agostinelli, etal., GEANT4: A Simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250–303. dx.doi.org/10.1016/S0168-9002(03)01368-8. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  7. J. Allison etal., Geant4 Developments and Applications, IEEE Trans. Nucl. Sci. 53 (2006) 270–278. dx.doi.org/10.1109/TNS.2006.869826. [Google Scholar]
  8. J. Allison etal., Recent developments in GEANT4, Nucl. Instrum. Meth. A835 (2016) 186–225. dx.doi.org/10.1016/j.nima.2016.06.125. [NASA ADS] [CrossRef] [Google Scholar]
  9. I.B. Smirnov, Modeling of ionization produced by fast charged particles in gases. Nucl. Instrum. Meth. A554 (2005) 474–493. dx.doi.org/10.1016/j.nima.2005.08.064. [Google Scholar]
  10. H. Schindler, Microscopic Simulation of Particle Detectors. CERN-THESIS-2012-208. cds.cern.ch/record/1500583. [Google Scholar]
  11. S.F. Biagi, Monte Carlo simulation of electron drift and diffusion in counting gases under the influence of electric and magnetic fields. Nucl.Instrum.Meth. A421 (1999) 234–240. dx.doi.org/10.1016/S0168-9002(98)01233-9. [CrossRef] [Google Scholar]
  12. H. Schindler etal., ] Calculation of gas gain fluctuations in uniform fields. Nucl.Instrum.Meth. A624 (2010), 78–84. dx.doi.org/10.1016/j.nima.2010.09.072. [CrossRef] [Google Scholar]
  13. F.F. Rieke and W. Prepejchal, Ionization Cross Sections of Gaseous Atoms and Molecules for High-Energy Electrons and Positrons. Phys. Rev. A 6, 1507. dx.doi.org/10.1103/PhysRevA.6.1507. [Google Scholar]
  14. O. Sahin etal., Penning transfer in argon-based gas mixtures. Journal of Instrumentation 5 (2010) P05002 1–30. dx.doi.org/10.1088/1748-0221/5/05/P05002. [CrossRef] [Google Scholar]
  15. O. Sahin etal., High-precision gas gain and energy transfer measurements in Ar-CO2 mixtures. Nucl.Instrum.Meth. A768 (2014) 104–111. dx.doi.org/10.1016/j.nima.2014. 09.061 [CrossRef] [Google Scholar]
  16. G. Bencivenni etal., The micro-Resistive WELL detector: a compact spark-protected single amplification-stage MPGD. JINST 10 (2015) P02008. dx.doi.org/10.1088/1748-0221/10/02/P02008. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.