Open Access
Issue |
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
|
|
---|---|---|
Article Number | 04010 | |
Number of page(s) | 7 | |
Section | T4 - Data handling | |
DOI | https://doi.org/10.1051/epjconf/201921404010 | |
Published online | 17 September 2019 |
- D. Barberis, S.C. Zárate, J. Cranshaw, A. Favareto, Á.F. Casaní, E. Gallas, C. Glasman, S.G. De La Hoz, J. Hřivnáč, D. Malon et al., The ATLAS EventIndex: architecture, design choices, deployment and first operation experience, in Journal of Physics: Conference Series (IOP Publishing, 2015), Vol. 664 p. 042003 [Google Scholar]
- Á. Fernández Casaní, F. Prokoshin, R. Yuan, J. Sánchez, J. Salt, D. Barberis, R. Többicke, A. Favareto, J. Hřivnáč, C.G. Montoro et al., ATLAS EventIndex general dataflow and monitoring infrastructure, in Journal of Physics: Conference Series (2017), Vol. 898, p. 062010 [CrossRef] [Google Scholar]
- S.A. Weil, S.A. Brandt, E.L. Miller, D.D.E. Long, C. Maltzahn, Ceph: A Scalable, High-performance Distributed File System, in Proceedings of the 7th Symposium on Operating Systems Design and Implementation (USENIX Association, Berkeley, CA, USA, 2006), OSDI ’06, pp. 307–320, ISBN 1-931971-47-1, http://dl.acm.org/citation.cfm?id=1298455.1298485 [Google Scholar]
- T. Lipcon, D. Alves, D. Burkert, J.D. Cryans, A. Dembo, M. Percy, S. Rus, D. Wang, M. Bertozzi, C.P. McCabe et al., Kudu: storage for fast analytics on fast data (2015) [Google Scholar]
- Z. Baranowski, D. Barberis, L. Canali, A. Fernandez Casani, E. Gallas, C. Garcia Mon-toro, S. Gonzalez de la Hoz, J. Hrivnac, F. Prokoshin, G. Rybkin et al, (ATLAS collaboration), A prototype for the evolution of the ATLAS EventIndex based on Apache Kudu storage, in Proceedings of the 23rd International Conference on Computing in High En-ergy and Nuclear Physics (EDP Sciences, Les Ulis, France, 2018) [Google Scholar]
- M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, A. Choi, J. Erickson, M. Grund, D. Hecht, M. Jacobs, I. Joshi et al., Impala: A modern, open-source sql engine for hadoop, in In Proc. CIDR’15 (2015) [Google Scholar]
- K. Masui, Bitshuffle https://github.com/kiyo-masui/bitshuffle (2018) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.