Open Access
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
Article Number 04025
Number of page(s) 8
Section T4 - Data handling
Published online 17 September 2019
  1. ATLAS Collaboration, "The ATLAS Experiment at the CERN Large Hadron Collider", JINST 3, S08003 (2008) [Google Scholar]
  2. C Eck et al., "LHC computing Grid: Technical Design Report”, CERN-LHCC-2005-024 (2005) [Google Scholar]
  3. J Catmore et al., “A new petabyte-scale data derivation framework for ATLAS”, J. Phys.:Conf. Ser. 664, 072007 (2015) [CrossRef] [Google Scholar]
  4. V Garonne et al., “Rucio – The next generation of large scale distributed system forATLAS Data Management”, J. Phys.: Conf. Ser. 513, 042021 (2014) [CrossRef] [Google Scholar]
  5. V Garonne et al., “The ATLAS Distributed Data Management project: Past and Future”, J. Phys.: Conf. Ser. 396, 032045 (2012) [CrossRef] [Google Scholar]
  6. T Maeno et al., “Evolution of the ATLAS PanDA workload management system for ex-ascale computational science”, J. Phys.: Conf. Ser. 513, 032062 (2014) [CrossRef] [Google Scholar]
  7. F H Barreiro et al., “The ATLAS Production System Evolution: New Data Processing and Analysis Paradigm for the LHC Run2 and High-Luminosity”, J. Phys.: Conf. Ser. 898, 052016 (2017) [CrossRef] [Google Scholar]
  8. P Nilsson et al., “Next Generation PanDA Pilot for ATLAS and Other Experiments”, J. Phys.: Conf. Ser. 513, 032071 (2014) [CrossRef] [Google Scholar]
  9. D Zang et al., “The ATLAS DDM Tracer monitoring framework”,J. Phys.: Conf. Ser. 396, 032119 (2012) [CrossRef] [Google Scholar]
  10. T Beermann et al., “C3PO - A Dynamic Data Placement Agent for ATLAS Distributed Data Management”, J. Phys.: Conf. Ser. 898, 062012 (2017) [CrossRef] [Google Scholar]
  11. M Magoni, “Development of a model to predict ATLAS data popularity using machine learning techniques" , Bachelor thesis University of Pavia (2017) [Google Scholar]
  12. Y Freund and R E Schapire, “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting”, Journal of Computer and System Sciences 55, 119–139 (1997) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.