Open Access
Issue
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
Article Number 05024
Number of page(s) 9
Section T5 - Software development
DOI https://doi.org/10.1051/epjconf/201921405024
Published online 17 September 2019
  1. G.J. Feldman, R.D. Cousins, Phys.Rev. D57, 3873 (1998), physics/9711021 [Google Scholar]
  2. R.D. Cousins, V.L. Highland, Nucl. Instrum. Meth. A320, 331 (1992) [CrossRef] [Google Scholar]
  3. F.P An et al. (Daya Bay), Phys. Rev. Lett. 117, 151802 (2016), 1607.01174 [CrossRef] [Google Scholar]
  4. P. Adamson et al. (NOvA), Phys. Rev. Lett. 116, 151806 (2016), 1601.05022 [CrossRef] [PubMed] [Google Scholar]
  5. R. Brun, F. Rademakers, Nucl.Instrum.Meth. A389, 81 (1997) [CrossRef] [Google Scholar]
  6. W. Verkerke, D.P. Kirkby, eConf C0303241, MOLT007 (2003), [,186 (2003)] [Google Scholar]
  7. R. Andreassen et al., J. Phys. Conf. Ser. 513, 052003 (2014), 1311.1753 [Google Scholar]
  8. R. Aaij et al. (LHCb), Phys. Rev. D93, 052018 (2016), 1509.06628 [Google Scholar]
  9. A.A. Alves Junior (2018), (visited on 2019–02–22), https://doi.org/10.5281/zenodo.1206261 [Google Scholar]
  10. F.P An et al. (Daya Bay), Phys. Rev. D95, 072006 (2017), 1610.04802 [Google Scholar]
  11. J.B. Dennis, J.B. Fosseen, J.P. Linderman, Data flow schemas (Berlin, Heidelberg, 1974), pp. 187–216, ISBN 978-3-540-38012-2 [Google Scholar]
  12. M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems (2015), (visited on 2019–02–22), http://tensorflow.org [Google Scholar]
  13. G. Guennebaud, B. Jacob et al., Eigen v3, http://eigen.tuxfamily.org (2010), (visited on 2019–02–22) [Google Scholar]
  14. boost C++ libraries, (visited on 2019–02–22), https://www.boost.org [Google Scholar]
  15. M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, GNU Scientific Library - Reference Manual, Third Edition, for GSL Version 1.12 (3. ed.) (Network Theory Ltd, 2009), ISBN 978-0-9546120-7-8, (visited on 2019–02–22), http://www.network-theory.co.uk/gsl/manual/ [Google Scholar]
  16. E. Jones et al. (2001), (visited on 2019–02–22), http://www.scipy.org/ [Google Scholar]
  17. J.D. Hunter, Computing in Science & Engineering 9, 90 (2007) [Google Scholar]
  18. A. Fatkina, M. Gonchar, D. Naumov, K. Treskov (2018), collaboration meeting talk (visited on 2019–02–22), https://astronu.jinr.ru/wiki/images/7/75/2018.10_dayabay_gna.pdf [Google Scholar]
  19. NVIDIA, Compute unified device architecture (CUDA) programming guide (2007) [Google Scholar]
  20. J. Nickolls, I. Buck, M. Garland, K. Skadron, Queue 6, 40 (2008) [CrossRef] [Google Scholar]
  21. A. Fatkina et al., CUDA Support in GNA Data Analysis Framework (2018), pp. 12–24 [Google Scholar]
  22. GNA home page, (visited on 2019–02–22), https://astronu.jinr.ru/wiki/index.php/GNA [Google Scholar]
  23. GNA documentation, (visited on 2019–02–22), http://gna.pages.jinr.ru/gna/ [Google Scholar]
  24. GNA reference guide, (visited on 2019–02–22), http://gna.pages.jinr.ru/gna/reference_guide.html [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.