Open Access
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
Article Number 05025
Number of page(s) 8
Section T5 - Software development
Published online 17 September 2019
  1. D. Goldberg, What every computer scientist should know about floating-point arithmetic, ACM Computing Surveys 23 (1991) [Google Scholar]
  2. C. Gumpert, A. Salzburger, J. Hrdinka, P. Gessinger, M. Kiehn, H. Grasland, F. Klimpel, R.J. Langenberg, S. Roe, V. Volkl et al., ACTS [software], commit db07bd685c03 (2018), [Google Scholar]
  3. A. Collaboration, Technical Design Report for the ATLAS Inner Tracker Strip Detector, Tech. Rep. CERN-LHCC-2017–005. ATLAS-TDR-025, CERN, Geneva (2017), [Google Scholar]
  4. A. Collaboration, Technical Design Report for the ATLAS Inner Tracker Pixel Detec-tor, Tech. Rep. CERN-LHCC-2017–021. ATLAS-TDR-030, CERN, Geneva (2017), [Google Scholar]
  5. ATLAS experiment at CERN, [Google Scholar]
  6. The HL-LHC project, [Google Scholar]
  7. Future Circular Collider study, [Google Scholar]
  8. F. Févotte, B. Lathuilière, Verrou [software], version 2.1.0 (2018), [Google Scholar]
  9. F. Févotte, B. Lathuilière, Verrou: Assessing floating-point accuracy without recompiling, working paper, [Google Scholar]
  10. F. Févotte, B. Lathuilière, Studying the Numerical Quality of an Industrial Computing Code: A Case Study on code_aster, in International Workshop on Numerical Software Verification (NSV) (Heidelberg, Germany, 2017), pp. 61–80, ISBN 978-3-319-63501-9 [CrossRef] [Google Scholar]
  11. N. Nethercote, J. Seward, Valgrind: A Framework for Heavyweight Dynamic Binary Instrumentation, in ACM SIGPLAN Conference on Programming Language Design and Implementation (2007), [Google Scholar]
  12. W. Kahan, How futile are mindless assessments of roundoff in floating-point computation (2006), web paper [Google Scholar]
  13. J. Vignes, A stochastic arithmetic for reliable scientific computation, Mathematics and Computers in Simulation 35, 233 (1993) [Google Scholar]
  14. D. Stott Parker, Monte Carlo arithmetic: exploiting randomness in floating-point arithmetic, Tech. Rep. CSD-970002, University of California, Los Angeles (1997), [Google Scholar]
  15. J.M. Chesneaux, J. Vignes, On the robustness of the CESTAC method, C. R. Acad.Sci. Paris 1, 855 (1988) [Google Scholar]
  16. D. Sohier, P. De Oliveira Castro, F. Févotte, B. Lathuilière, E. Petit, O. Ja-mond, Confidence intervals for stochastic arithmetic,preprint, [Google Scholar]
  17. A. Zeller, Why Programs Fail (Morgan Kaufmann, 2009), ISBN 978-0-12-374515-6 [Google Scholar]
  18. A. Zeller, R. Hildebrandt, Simplifying and isolating failure-inducing input, IEEE Trans-actions on Software Engineering 28, 183 (2002) [CrossRef] [Google Scholar]
  19. F. Févotte, B. Lathuilière, Debugging and optimization of HPC programs in mixed precision with the Verrou tool, in Computational Reproducibility at Exascale (Dallas (TX), USA, 2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.