Open Access
Issue |
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
|
|
---|---|---|
Article Number | 06012 | |
Number of page(s) | 8 | |
Section | T6 - Machine learning & analysis | |
DOI | https://doi.org/10.1051/epjconf/201921406012 | |
Published online | 17 September 2019 |
- The ATLAS Experiment at the CERN Large Hadron Collider, Vol. 3 (2008) [Google Scholar]
- W.W. Chu, IEEE Transactions on Computers 100, 885 (1969) [CrossRef] [Google Scholar]
- D.A. Bell, The Computer Journal 27, 315 (1984) [Google Scholar]
- W. Guo, X. Wang, A data placement strategy based on genetic algorithm in cloud com-puting platform, in Web Information System and Application Conference (WISA), 2013 10th (IEEE, 2013), pp. 369–372 [Google Scholar]
- K.A. Abdel-Ghaffar, A. El Abbadi, Optimal allocation of two-dimensional data, in International Conference on Database Theory (Springer, 1997), pp. 409–418 [Google Scholar]
- S. Berchtold, C. Böhm, B. Braunmüller, D.A. Keim, H.P. Kriegel, Fast Parallel Similarity Search in Multimedia Databases, in Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data (ACM, New York, NY, USA, 1997), SIGMOD ’97, pp. 1–12, ISBN 0-89791-911-4, http://doi.acm.org/10.1145/253260.253263 [Google Scholar]
- D. Bonacorsi, T. Boccali, D. Giordano, M. Girone, M. Neri, N. Magini, V. Kuznetsov, T. Wildish, Exploiting CMS data popularity to model the evolution of data management for Run-2 and beyond, in Journal of Physics: Conference Series (IOP Publishing, 2015), Vol. 664, p. 032003 [Google Scholar]
- F.B. Megino, M. Cinquilli, D. Giordano, E. Karavakis, M. Girone, N. Magini, V. Mancinelli, D. Spiga, Implementing data placement strategies for the CMS experiment based on a popularity model, in Journal of Physics: Conference Series (IOP Publishing, 2012), Vol. 396, p. 032047 [CrossRef] [Google Scholar]
- D. Spiga, D. Giordano, F.H. Barreiro Megino, Optimizing the usage of multi-Petabyte storage resources for LHC experiments, in Proceedings of the EGI Community Forum 2012/EMI Second Technical Conference (EGICF12-EMITC2). 26–30 March, 2012. Munich, Germany. Published online at https://pos.sissa.it/162/107/ (2012) [Google Scholar]
- M. Hushchyn, P. Charpentier, A. Ustyuzhanin, Disk storage management for LHCb based on Data Popularity estimator, in Journal of Physics: Conference Series (IOP Publishing, 2015), Vol. 664, p. 042026 [CrossRef] [Google Scholar]
- M. Hushchyn, A. Ustyuzhanin, K. Arzymatov, S. Roiser, A. Baranov, The LHCb Grid Simulation: Proof of Concept, in Journal of Physics: Conference Series (IOP Publishing, 2017), Vol. 898, p. 052020 [CrossRef] [Google Scholar]
- T. Beermann, M. Lassnig, M. Barisits, C. Serfon, V. Garonne, A. Collaboration, et al., C3PO-A dynamic data placement agent for ATLAS distributed data management, in Journal of Physics: Conference Series (IOP Publishing, 2017), Vol. 898, p. 062012 [Google Scholar]
- M. Barisits, C. Serfon, V. Garonne, M. Lassnig, T. Beermann, T. Javurek, A. Collabo-rationet al., Automatic rebalancing of data in ATLAS distributed data management, in Journal of Physics: Conference Series (IOP Publishing, 2017), Vol. 898, p. 062006 [CrossRef] [Google Scholar]
- H. Sato, S. Matsuoka, T. Endo, File clustering based replication algorithm in a grid environment, in Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid (IEEE Computer Society, 2009), pp. 204–211 [CrossRef] [Google Scholar]
- R. Vamosi, M. Lassnig, E. Schikuta, Data Allocation Based on Evolutionary Data Popularity Clustering, in International Conference on Computational Science (Springer, 2018), pp. 153–166 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.