Open Access
Issue
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
Article Number 06013
Number of page(s) 8
Section T6 - Machine learning & analysis
DOI https://doi.org/10.1051/epjconf/201921406013
Published online 17 September 2019
  1. A. Hawthorne-Gonzalvez, M. Sevior, Nuclear Int. and Methods in Physics Research, A913, 54 (2019), 1712.07790v2 [CrossRef] [Google Scholar]
  2. W.H. S.W. Lin, Y. Unnoet al., Nature 452, 332 (2008) [CrossRef] [PubMed] [Google Scholar]
  3. M. Fujikawaet al. (Belle), Phys. Rev. D81, 011101 (2010) [Google Scholar]
  4. S. Baeket al., Phys. Lett. B678, 97 (2009) [CrossRef] [Google Scholar]
  5. D.J. Lange, Nucl. Instrum. Meth. A462, 152 (2001) [CrossRef] [Google Scholar]
  6. R. Brun, L. Urban, F. Carminati, S. Giani, M. Maire, A. McPherson, F. Bruyant, G. Patrick, Tech. rep., CERN (1993), http://cds.cern.ch/record/1073159/files/cer-002728534.pdf [Google Scholar]
  7. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, Tensorflow: Large-scale machine learning on heterogeneous distributed systems (2016), 1603.04467 [Google Scholar]
  8. D.P. Kingma, J. Ba, Adam: A method for stochastic optimization (2014), 1412.6980 [Google Scholar]
  9. L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar, Hyperband: A novel bandit-based approach to hyperparameter optimization (2016), 1603.06560 [Google Scholar]
  10. M. Feindt, U. Kerzel, AIP Conference Proceedings 1504, 1013 (2012) Nucl. Instrum. Meth. A559, 190 (2006) [Google Scholar]
  11. J. Therhaaget al., AIP Conference Proceedings 1504, 1013 (2012) [Google Scholar]
  12. R.H. Byrd, P. Lu, J. Nocedal, C. Zhu, SIAM Journal on Scientific Computing 16, 1190 (1995) [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Feindt, A Neural Bayesian Estimator for Conditional Probability Densities (2004), physics/0402093 [Google Scholar]
  14. G. Louppe, M. Kagan, K. Cranmer, Learning to pivot with adversarial networks (2016), 1611.01046 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.