Open Access
Issue |
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
|
|
---|---|---|
Article Number | 09005 | |
Number of page(s) | 8 | |
Section | PL - Plenary contributions | |
DOI | https://doi.org/10.1051/epjconf/201921409005 | |
Published online | 17 September 2019 |
- L. Evans, P. Bryant, JINST 3, S08001 (2008) [Google Scholar]
- S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506, 250 (2003) [Google Scholar]
- Y. LeCun, Y. Bengio, G. Hinton, Nature 521, 436 (2015) [Google Scholar]
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, in Advances in Neural Information Processing Systems 27 (2014), pp. 2672–2680, http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf [Google Scholar]
- M. Mustafa, D. Bard, W. Bhimji, R. Al-Rfou, Z. Lukić, arXiv:1706.02390 (2017) [Google Scholar]
- L. de Oliveira, M. Paganini, B. Nachman, Computing and Software for Big Science 1, 4 (2017) [Google Scholar]
- M. Paganini, L. de Oliveira, B. Nachman, Physical Review D 97, 014021 (2018) [Google Scholar]
- G. Rukhkhattak, S. Vallecorsa, F. Carminati, Three Dimensional Energy Parametrized Generative Adversarial Networks for Electromagnetic Shower Simulation, in 2018 25th IEEE International Conference on Image Processing (ICIP) (IEEE, 2018), pp. 3913–3917 [Google Scholar]
- W. Bhimji, S.A. Farrell, T. Kurth, M. Paganini, E. Racah, Prabhat, arXiv preprint arXiv:1711.03573 (2017) [Google Scholar]
- T. Sjostrand, S. Mrenna, P. Skands, Computer Physics Communications 178, 852 (2008) [Google Scholar]
- J. de Favereau, C. Delaere et al., JHEP 2014, 57 (2014) [Google Scholar]
- M. Cacciari, G.P. Salam, G. Soyez, The European Physical Journal C 72, 1896 (2012) [Google Scholar]
- N. Dawe, E. Rodrigues, pyjet: the interface between fastjet and numpy (2010), https://github.com/scikit-hep/pyjet [Google Scholar]
- A. Radford, L. Metz, S. Chintala, CoRR abs/1511.06434 (2015), 1511.06434 [Google Scholar]
- D.P. Kingma, J. Ba, CoRR abs/1412.6980 (2014) [Google Scholar]
- R. Simard, P. L’Ecuyer, Journal of Statistical Software, Articles 39, 1 (2011) [Google Scholar]
- M. Arjovsky, S. Chintala, L. Bottou, arXiv preprint arXiv:1701.07875 (2017) [Google Scholar]
- I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A.C. Courville, Improved training of wasserstein gans, in Advances in Neural Information Processing Systems (2017), pp. 5767–5777 [Google Scholar]
- T. Miyato, T. Kataoka, M. Koyama, Y. Yoshida, CoRR abs/1802.05957 (2018), 1802.05957 [Google Scholar]
- T. Salimans, H. Zhang, A. Radford, D.N. Metaxas, CoRR abs/1803.05573 (2018), 1803.05573 [Google Scholar]
- T. Kurth, M. Smorkalov, P. Mendygral, S. Sridharan, A. Mathuriya, Concurrency and Computation: Practice and Experience p. e4989 (2018), https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4989 [Google Scholar]
- A. Sergeev, M.D. Balso, arXiv preprint arXiv:1802.05799 (2018) [Google Scholar]
- P. Mendygral, N. Hill, K. Kandalla, D. Moise, J. Balma, M. Schongens, High performance scalable deep learning with the cray programming environments deep learning plugin, cray users group (2018), https://www.cray.com/sites/default/files/resources/CUG-DeepLearning.pdf [Google Scholar]
- S. Farrell, W. Bhimji, A. Vose, O. Evans, M. Henderson, S. Cholia, R. Thomas, S. Canon, Prabhat, Interactive distributed deep learning with jupyter notebooks, https://drive.google.com/open?id=1lAK16LthN0NpCp97sX-tY7--WyUYojOZ [Google Scholar]
- M.M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, P. Vandergheynst, CoRR abs/1611.08097 (2016), 1611.08097 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.