Open Access
Issue |
EPJ Web Conf.
Volume 217, 2019
International Workshop on Flexibility and Resiliency Problems of Electric Power Systems (FREPS 2019)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/epjconf/201921701002 | |
Published online | 15 October 2019 |
- A. Monticelli, State estimation in electric power systems: a generalized approach. – Springer Science & Business Media, 2012. [Google Scholar]
- A.Z. Gamm, Statistical methods for state estimation of electric power systems. – Nauka, 1976. [Google Scholar]
- D. L. Marino, K. Amarasinghe, M. Manic, Building energy load forecasting using deep neural networks //Industrial Electronics Society, IECON 2016-42nd Annual Conference of the IEEE. – IEEE, 2016. – C. 7046-7051. [Google Scholar]
- R. Jozefowicz, W. Zaremba, I. Sutskever, An empirical exploration of recurrent network architectures //International Conference on Machine Learning. – 2015. – C. 2342-2350. [Google Scholar]
- A. Graves, Practical variational inference for neural networks //Advances in neural information processing systems. – 2011. – C. 2348-2356. [Google Scholar]
- C. Blundell et al., Weight uncertainty in neural networks //arXiv preprint arXiv:1505.05424. – 2015. [Google Scholar]
- M.J. Wainwright et al., Graphical models, exponential families, and variational inference //Foundations and Trends® in Machine Learning. – 2008. – Т. 1. – №. 1–2. – C. 1-305. [Google Scholar]
- A. Graves, Practical variational inference for neural networks //Advances in neural information processing systems. – 2011. – C. 2348-2356. [Google Scholar]
- C. Blundell et al., Weight uncertainty in neural networks //arXiv preprint arXiv:1505.05424. – 2015. [Google Scholar]
- M. Fortunato, C. Blundell, O. Vinyals, Bayesian recurrent neural networks //arXiv preprint arXiv:1704.02798. – 2017. [Google Scholar]
- T.K. Ho, Random decision forests //Proceedings of 3rd international conference on document analysis and recognition. IEEE, 1995. Т. 1. C. 278-282. [Google Scholar]
- L. Breiman, Random forests //Machine learning. 2001. Т. 45. №. 1. C. 5-32. [Google Scholar]
- E.M. Kleinberg, On the algorithmic implementation of stochastic discrimination //IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000. Т. 22. №. 5. C. 473-490. [Google Scholar]
- A. Domyshev et al., Optimal Power Flow Calculation Using BFGS-Based Optimisation Scheme //2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2018. C. 1-6. [Google Scholar]
- R.H. Byrd et al., A limited memory algorithm for bound constrained optimization //SIAM Journal on Scientific Computing. 1995. Т. 16. №. 5. C. 1190-1208. [CrossRef] [MathSciNet] [Google Scholar]
- P. Armand, P. Segalat, A limited memory algorithm for inequality constrained minimization. Technical Report 2003-08, University of Limoges (France) 2003, 2003. [Google Scholar]
- Software package for power system modeling, [Online]. Available in RUSSIAN: http://anares.ru/software [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.