Open Access
EPJ Web Conf.
Volume 217, 2019
International Workshop on Flexibility and Resiliency Problems of Electric Power Systems (FREPS 2019)
Article Number 01010
Number of page(s) 6
Published online 15 October 2019
  1. Voropay N.I., Stennikov V.A. Integrated Intelligent Energy Systems / Bulletin of the Russian Academy of Sciences. Energy. – № 1. – 2014. – Pp. 64-78 (in Russian). [Google Scholar]
  2. Federal project “Digital Energy” (access date 08.08.2018) (in Russian) [Google Scholar]
  3. Bengio, Y. Deep Learning (Adaptive Computation and Machine Learning series) / Yoshua Bengio, Ian Goodfellow, Aaron Courville // The MIT Press, 2016. – 800 p. [Google Scholar]
  4. Rusiecki, A. Effectiveness of Unsupervised Training in Deep Learning Neural Networks / A. Rusiecki, M. Kordos // Schedae Informaticae, 24. – 2016. – Pp. 41-51. [Google Scholar]
  5. Zhang, S. Deep learning with Elastic Averaging SGD / S. Zhang, A. Choromanska, Y. LeCun // Neural Information Processing Systems Conference (NIPS 2015). – Pp. 1-24. [Google Scholar]
  6. Galushkin A.I. Neural networks: the basics of theory. – M: Hotline-Telecom, 2012. – 496 p. (in Russian) [Google Scholar]
  7. Mandic, D. Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stabilit. / Mandic, D. & Chambers, J.– Wiley. – 2001. [Google Scholar]
  8. Gladkov L.A., Kureichik V.V., Kureichik V.M. Genetic Algorithms. Edited by V.M. Kureichik. 2nd ed. – M.: Fizmatlit, 2006. – 320 p. (in Russian). [Google Scholar]
  9. Caudell T.P. Genetic algorithms as a tool for the analysis of adaptive resonance theory neural network sets //Proceedings of International Workshop on Combinations of Genetic Algorithms and Neural Networks, COGANN-92. – 1992. – Pp. 184-200. [Google Scholar]
  10. Koza, J.R. Genetic generation of both the weights and architecture for a neural network/Koza J.R., Rice J.P. // IEEE International Joint Conference on Neural Networks. – Seatle, WA. 1993.– Pp. 397-404. [Google Scholar]
  11. Schizas, C.N. Neural networks, genetic algorithms and к-means algorithm: In search of data classification/ C.N. Schizas, C.S. Pattichis, L.T. Middleton //Proceedings of International Workshop on Combinations of Genetic Algorithms and Neural Networks, COGANN-92, 1992. [Google Scholar]
  12. Pospelov D.A. Situational management. Theory and practice. M.: Science. 1986. – 284p. (in Russian). [Google Scholar]
  13. Massel’ L.V., Massel’ A.G. Methods and tools for situational management in the energy sector based on the semantic modeling // IV International Conference OSTIS-2015: Proceedings. Minsk. Belarus’ State University of Informatics and Radiotechnics, 2015. – Pp. 199-204 (in Russian) [Google Scholar]
  14. Vasil’ev V.I., Il’jasov B.G. Intelligent management systems. Theory and practice. M., 2009. – 392 p. (in Russian). [Google Scholar]
  15. Pyatkova N.I., Massel L.V., Massel A.G. Methods of situational management in studies of energy security problems / Bulletin of the Russian Academy of Sciences. Energy. – № 4, 2016. – Pp. 156-163 (in Russian). [Google Scholar]
  16. Gerget O.M., Devjatykh D.V. Bionic models of the analysis of the functioning of dynamic systems // Information and mathematical technologies in science and management: proceedings of the XIX Baikal All-Russian Conference, 2014. Volume 3. Pp. 17-21 (in Russian). [Google Scholar]
  17. Gerget O.M., Devjatykh D.V. Bionic model for identification of biological systems / Information and mathematical technologies in science and management, 2017. – № 2 (6). – Pp. 21-29 (in Russian). [Google Scholar]
  18. Gerget, O. M. Bionic models for identification of biological systems / Journal of Physics, 2017. – Vol. 803. – Pp. 1-6. [Google Scholar]
  19. Amirov A.Z., Gerget O.M., Bisenbay M.A., Baymuldin M.M. Applying Neural Network for Dynamical System Rating / World Academy of Science, Engineering and Technology, 2013. – Issue 74. – Pp. 719-723. [Google Scholar]
  20. Igel, C. Using the Natural Gradient. Trends and Applications in Constructive Approximation / C. Igel, M. Toussaint, W. R. Weishui // ISNM International Series of Numerical Mathematics book series, 2005. – Vol. 151. – P. 259-272. [Google Scholar]
  21. Massel L.V. Problems of creating intelligent systems of the semiotic type for strategic situational management in critical infrastructures / Information and mathematical technologies in science and management. – № 1. – 2016.–Pp. 7-27 (in Russian). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.