Open Access
EPJ Web Conf.
Volume 217, 2019
International Workshop on Flexibility and Resiliency Problems of Electric Power Systems (FREPS 2019)
Article Number 01018
Number of page(s) 6
Published online 15 October 2019
  1. Сochran J., Miller M., Zinaman O., Milligan M., e.a., “Flexibility in 21st Century power systems”, 21st Century Power Partnership, Denver, USA, Clean Energy Ministerial, 2014, pp. 1-14. [Google Scholar]
  2. Bucher M.A., Delikaraoglou S., Heussen K., Pinson P., Andersson G., “On quantification of flexibility in power systems”, 2015 IEEE Power Tech, Eindhoven, Netherlands, June 29 – July 2, 2015, 6 p. [Google Scholar]
  3. Jinye Zhao, Tongxin Zheng, Litvinov E., “A unified framework for defining and measuring flexibility in power system”, IEEE Trans. on Power Systems, 2016, Vol. 31, No. 1, pp. 339-347. [Google Scholar]
  4. Volin Yu.M., Ostrovskiy G.M., “Flexibility analysis of complex technical systems under uncertainty”, Avtomatika I Telemehanika (Remote Control), 2002, No. 7, pp. 92-106. [Google Scholar]
  5. Voropai N.I., Osak A.B., “Electric power systems of the future”, Energeticheskaya Politika, 2014, Issue 5, pp. 22-29 (in Russian). [Google Scholar]
  6. Sun Hongbo, Wang Yishen, Nikovski D., Zhang Jinyun, “Flex-Grid: A dynamic and adaptive configurable power distribution system”, 2015 IEEE Power Tech, Eindhoven, Netherlands, June 29 – July 2, 2015, 6 p. [Google Scholar]
  7. Schuitema G., Ryan L., Aravena C., “The consumer’s role in flexible energy systems”, IEEE Power and Energy Magazine, 2017, Vol. 15, No. 1, pp. 53-60. [CrossRef] [Google Scholar]
  8. Casey E., Beaini S., Pabi S., Zammit K., Amarnath A., “The triple bottom line for efficiency”, IEEE Power and Energy Magazine, 2017, Vol. 15, No. 1, pp. 34-42. [CrossRef] [Google Scholar]
  9. Kiviluoma J., Heinen S., Qazi H., Madsen H., Strbac G., etc., “Harnessing flexibility from hot and cold”, IEEE Power and Energy Magazine, 2017, Vol. 15, No. 1, pp. 25-33. [CrossRef] [Google Scholar]
  10. Chen Xinyu, Kang Chongquing, O’Maley M., Xia Qing, etc., “Increasing the flexibility of combined heat and power for wind power integration in China: Modeling and implication”, IEEE Trans. on Power Systems, 2015, Vol. 30, No. 4, pp. 1848-1857. [CrossRef] [Google Scholar]
  11. Heinen S., Hewicker C., Jenkins N., McCalley J., O’Malley M., etc., “Unleashing the flexibility of gas”, IEEE Power and Energy Magazine, 2017, Vol. 15, No. 1, pp. 16-24. [CrossRef] [Google Scholar]
  12. Gopalan S., Sreeram V., Iu H., Mishra Y., “A flexible protection scheme for an islanded multi-microgrid”, 4th IEEE PES Innovative Smart Grid Technologies Europe, Copenhagen, October 6 – 9, 5 p. [Google Scholar]
  13. Voropai N.I., Efimov D.N., Kolosok I.N., Kurbatsky V.G., Glasunova A.M., Korkina E.S., Tomin N.V., Panasetsky D.A., “Intelligent control and protection in the Russian electric power system”, Application of Smart Grid Technologies, London, UK, Elsevier-Academic Press, 2018, pp. 61-140. [CrossRef] [Google Scholar]
  14. Dall’Anese E., Mancarella P., Monti A., “Unlocking flexibility”, IEEE Power and Energy Magazine, 2017, Vol. 15, No. 1, pp. 43-52. [CrossRef] [Google Scholar]
  15. Lund P.D., Lindgren J., Mikkola J., Salpakari J., “Review of energy system flexibility measures to enable high levels of variable renewable electricity”, Renewable and Sustainable Energy Reviews, 2015, Vol. 45, pp. 785-807, Ref, 393. [CrossRef] [Google Scholar]
  16. Kundur P., Paserba J., Viter S., “Overview on definition and classification of power system stability”, CIGRE / IEEE PES Int. Symposium on Quality and Security of Electric Power Delivery Systems, 2003, 8 p. [Google Scholar]
  17. Marceau R.J., Endrenyi J., Allan R., Alvarado F.L., e. a., ”Power system security assessment: A position paper”, Electra, 1997, No. 175, pp. 49-77. [Google Scholar]
  18. Bistline J.E., “Turn down for what? The economic value of operational flexibility in electricity markets”, IEEE Trans. Power Systems, 2019, Vol. 34, No. 1, pp. 527-534. [CrossRef] [Google Scholar]
  19. Amin M., “Challenges in reliability, security, efficiency, and resilience of energy infrastructure: Toward smart self-healing electric power grid”, IEEE PES General Meeting, Pittsburg, USA, July 20 – 24, 2008, 5 p. [Google Scholar]
  20. Cen Nan, Sansavini G., Kroeger W., “Building an integrated metric for quantifying the resilience of interdependent infrastructure systems”, 9th Int. Conference on Critical Information Infrastructure Security, Limassol, Cyprus, October 13 – 15, 2014, 12 p. [Google Scholar]
  21. Wang Y., Chen C., Wang J., Baldick R., “Research on resilience of power systems under natural disasters – A review”, IEEE Trans. Power Systems, 2016, Vol. 31, No. 2, pp. 1604-1612. [CrossRef] [Google Scholar]
  22. Wang Z., Nistor M.S., Pickl S.W., “Analysis of definitions of resilience”, 20th IFAC World Congress, Toulouse, France, July 9 – 14, 2017, pp. 11136-11144. [Google Scholar]
  23. Panteli M., Mancarella P., Trakas D.N., Kyriakides E., Hadziargiriou N.D., “Metrics and quantification of operational and infrastructure resilience in power systems”, IEEE Trans Power Systems, 2017, Vol. 32, No 6, pp. 4732-4741. [CrossRef] [Google Scholar]
  24. Kezunovic M., Overbye T.J., “Off the beaten path: Resiliency and associated risk”, IEEE Power and Energy Magazine, 2018, Vol. 16, No. 2, pp. 26-35. [CrossRef] [Google Scholar]
  25. Mehrdad S., Mousavian S., Madraki G., Dvorkin Yu., “Cyber-physical resilience of electrical power systems against malicious attacks: A review”, Current Sustainable / Renewable Energy Reports, [Google Scholar]
  26. Voropai N., Kolosok I., Korkina E., “Resilience assessment of the state estimation software under cyberattacks”, E3S Web of Conferences, 2018, Vol. 58, [Google Scholar]
  27. Papkov B.V., Kulikov A.L., Osokin V.L., “Cyber threats and cyberk in electric power industry”, Nizhny Novgorod, 2017, 80 p. (in Russian). [Google Scholar]
  28. Heinimann H.R., “Future resilient systems”, Singapore-Zurich, ETH Risk Center, 2014, 600 p. [Google Scholar]
  29. Voropai N.I., “The problem of large electric power system survivability”, IEEE Power Tech, Stockholm, Sweden, June 18 – 22, 1995, 5 p. [Google Scholar]
  30. Besanger Y., Eremia M., Voropai N., “Major grid blackouts: Analysis, classification, and prevention”, Handbook of Electrical Power System Dynamics: Modeling, Stability, and Control; Ed. By M. Eremia and M. Shahidehpour, Hoboken, IEEE Press-Wiley, 2013, pp. 789-863. [CrossRef] [Google Scholar]
  31. Fouad A.A., Zhou Qin, Vittal V., “System vulnerability as a concept to access power system dynamic security”, IEEE Trans. Power Systems, 1994, Vol. 9, No. 2, pp. 1009-1015. [CrossRef] [Google Scholar]
  32. Sovalov S.A., Semenov V.A., “Emergency protection and control in power systems”, Moscow, Energoatomizdat, 1988, 416 p. (in Russian). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.