Open Access
Issue
EPJ Web Conf.
Volume 237, 2020
The 29th International Laser Radar Conference (ILRC 29)
Article Number 01004
Number of page(s) 4
Section Space Lidars
DOI https://doi.org/10.1051/epjconf/202023701004
Published online 07 July 2020
  1. C. Le Quéré et al., The global carbon budget 1959–2011, Earth Syst. Sci. Data, 5, 165–185 (2013). [CrossRef] [Google Scholar]
  2. G.J. Nabuurs et al., Forestry. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY (2007). [Google Scholar]
  3. D.C. McKinley et al., A synthesis of current knowledge on forests and carbon storage in the United States, Ecol. App., doi:10.1890/10-0697.1 (2011). [Google Scholar]
  4. M. Reuter et al., A simple empirical model estimating atmospheric CO2 background concentrations, Atmos. Meas. Tech., 5, 1349–1357 (2012). [CrossRef] [Google Scholar]
  5. B. B Stephens et al., Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2, Science, 316, 1732-1735 (2007). [CrossRef] [PubMed] [Google Scholar]
  6. M. Riebesell, Raman lidar for the remote sensing of the water vapor and carbon dioxide profile in the troposphere (in German). Ph.D. thesis, GKSS document 901/F/13, University of Hamburg, 127 pp. (1990). [Google Scholar]
  7. A. Ansmann et al., Combined Raman Elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio, Appl. Phys., 55B, 18-28 (1992). [CrossRef] [Google Scholar]
  8. P. Di Girolamo et al., Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman Lidar and of relative humidity in combination with differential absorption Lidar: performance simulations. Applied Optics, 45, 2474-2494, doi: 10.1364/AO.45.002474 (2006). [CrossRef] [PubMed] [Google Scholar]
  9. P. Di Girolamo et al., Space-borne profiling of atmospheric thermodynamic variables with Raman lidar: performance simulations, Optics Express, 26(7), 8125-8161, doi: 10.1364/OE.26.008125 (2018). [CrossRef] [Google Scholar]
  10. Gatti et al., Vertical profiles of CO2 above eastern Amazonia suggest a net carbon flux to the atmosphere and balanced biosphere between 2000 and 2009, Tellus, 62B, 581–594 (2010). [CrossRef] [Google Scholar]
  11. Buchmann et al., Global Change Biology, 2, 421-432, 1996. [CrossRef] [Google Scholar]
  12. P. Di Girolamo et al., Rotational Raman Lidar measurements of atmospheric temperature in the UV. Geophysical Research Letters, 31, doi: 10.1029/2003GL018342 (2004). [Google Scholar]
  13. D. N. Whiteman et al., Demonstration Measurements of Water Vapor, Cirrus Clouds, and Carbon Dioxide using a High-Performance Raman Lidar, Journal of Atmospheric and Oceanic Technology, 24, 1377-1388 (2007). [CrossRef] [Google Scholar]
  14. P. P. Di Girolamo et al., Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event, Journal of Atmospheric and Oceanic Technology, 26, 1742-1762, doi: 10.1175/2009JTECHA1253.1 (2009). [CrossRef] [Google Scholar]
  15. Bhawar et al., Spectrally Resolved Observations of Atmospheric Emitted Radiance in the H2O Rotation Band, Geophysical Research Letters, 35, L04812, ISSN: 0094-8276, doi: 10.1029/2007GL032207 (2008). [CrossRef] [Google Scholar]
  16. Serio et al., Retrieval of foreign-broadened water vapor continuum coefficients from emitted spectral radiance in the H2O rotational band from 240 to 590 cm-1, Optics Express, 16/20, 15816-15833, doi: 10.1364/OE.16.015816 (2008). [CrossRef] [Google Scholar]
  17. Wulfmeyer et al., Research campaign: The convective and orographically induced precipitation study - A research and development project of the World Weather Research Program for improving quantitative precipitation forecasting in low-mountain regions, Bulletin of the American Meteorological Society, 89, 1477-1486, ISSN: 0003-0007, doi: 10.1175/2008BAMS2367.1 (2008). [CrossRef] [Google Scholar]
  18. Bennett et al., Initiation of convection over the Black Forest mountains during COPS IOP15a, Quarterly Journal of the Royal Meteorological Society, 137, 176-189, doi: 10.1002/qj.760 (2011). [CrossRef] [Google Scholar]
  19. Kiemle et al., Latent heat flux measurements over complex terrain by airborne water vapour and wind Lidars. Quarterly Journal of the Royal Meteorological Society, 137, 190-203, ISSN: 0035-9009, doi: 10.1002/qj.757 (2011). [CrossRef] [Google Scholar]
  20. Steinke et al., Assessment of Small-Scale Integrated Water Vapour Variability During HOPE, Atmospheric Chemistry and Physics, 15(5), 2675-26929, doi:10.5194/acp-15-2675-2015 (2015). [CrossRef] [Google Scholar]
  21. Macke et al., The HD(CP)2 Observational Prototype Experiment HOPE - An Overview, Atmospheric Chemistry and Physics, 17, 4887–4914, doi:10.5194/acp-17-4887-2017 (2017). [CrossRef] [Google Scholar]
  22. ESA, “ARMA Reference Model of the Atmosphere,” in Technical Report APP-FP/99–11239/AC/ac (European Space Agency, 1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.