Open Access
Issue
EPJ Web Conf.
Volume 238, 2020
EOS Annual Meeting (EOSAM 2020)
Article Number 01004
Number of page(s) 2
Section Topical Meeting (TOM) 1- Silicon Photonics and Guided-Wave Optics
DOI https://doi.org/10.1051/epjconf/202023801004
Published online 20 August 2020
  1. J. Capmany, and D. Novak, “Microwave photonics combines two worlds,” Nature Photonics, 1(6), 319-330 (2007). [Google Scholar]
  2. A. J. Seeds, “Microwave photonics,” IEEE Transactions on Microwave Theory and Techniques, 50(3), 877-887 (2002). [Google Scholar]
  3. R. C. Williamson, and R. D. Esman, “RF photonics,” IEEE Journal of Lightwave Technology, 26 (9-12), 1145-1153 (2008). [CrossRef] [Google Scholar]
  4. J. P. Yao, “Microwave Photonics,” IEEE Journal of Lightwave Technology, 27 (1-4), 314-335 (2009). [CrossRef] [Google Scholar]
  5. Q. Z. Cen, et al., “Rapidly and continuously frequency-scanning opto-electronic oscillator,” Optics Express, 25(2), 635-643 (2017). [CrossRef] [PubMed] [Google Scholar]
  6. J. Dai, X. Y. Xu, J. L. Ke et al., “Self-Oscillating Triangular Pulse Generator Based on 90 degrees Photonic-Assisted Phase Shifter,” IEEE Photonics Technology Letters, 29(3), 271-274 (2017). [CrossRef] [Google Scholar]
  7. J. Dai, et al., “Self-oscillating optical frequency comb generator based on an optoelectronic oscillator,” Opt Express, 23 (23), 30014 (2015). [CrossRef] [PubMed] [Google Scholar]
  8. K. Xu, et al., “Microwave photonics: radio-over-fiber links, systems, and applications,” Photonics Research, 2(4), B54-B63 (2014). [Google Scholar]
  9. X. Y. Xu, J. Dai, Y. T. Dai et al., “Broadband and wide-range feedback tuning scheme for phase-locked loop stabilization of tunable optoelectronic oscillators,” Optics Letters, 40(24), 5858-5861 (2015). [CrossRef] [PubMed] [Google Scholar]
  10. A. X. Zhang, et al., “Stable RF delivery by lambda dispersion-induced optical tunable delay,” Opt Lett, 38 (14), 2419 (2013). [CrossRef] [PubMed] [Google Scholar]
  11. S. Mansoori, and A. Mitchell, “RF transversal filter using an AOTF,” IEEE Photonics Technology Letters, 16(3), 879-881 (2004). [CrossRef] [Google Scholar]
  12. H. Emami, et al., “Wideband RF photonic in-phase and quadrature-phase generation,” Optics letters, 33(2), 98-100 (2008). [CrossRef] [PubMed] [Google Scholar]
  13. S. L. Pan, and J. P. Yao, “Optical generation of polarity- and shape-switchable ultrawideband pulses using a chirped intensity modulator and a 1st order MZ interferometer,” Optics Letters, 34(9), 1312-1314 (2009). [CrossRef] [PubMed] [Google Scholar]
  14. D. Marpaung, et al., “Nonlinear Integrated Microwave Photonics,” J. of Lightwave Technology, 32(20), 3421-3427 (2014). [CrossRef] [Google Scholar]
  15. D. Marpaung et al., “Integrated microwave photonics,” Laser & Photonics Reviews, 7(4), 506-538 (2013). [Google Scholar]
  16. J. Wu, et al., “Compact tunable Si photonic differential-equation solver for general linear time-invariant systems,” Opt Express, 22 (21), 26254 (2014). [CrossRef] [PubMed] [Google Scholar]
  17. J. Y. Wu, et al., “Nested Configuration of Silicon Microring Resonator With Multiple Coupling Regimes,” IEEE Photonics Technology Letters, 25(6), 580-583 (2013). [CrossRef] [Google Scholar]
  18. J. Y. Wu, P. Cao, T. Pan et al., “Compact on-chip 1 x 2 wavelength selective switch based on silicon microring resonator with nested pairs of subrings,” Photonics Research, 3(1), 9-14 (2015). [Google Scholar]
  19. J. Y. Wu, et al., “On-Chip Tunable Second-Order Differential-Equation Solver Based on a Silicon Photonic Mode-Split Microresonator,” J. of Lightwave Technology, 33(17), 3542-3549 (2015). [CrossRef] [Google Scholar]
  20. J. Y. Wu, et al., “Passive silicon photonic devices for microwave photonic signal processing,” Optics Communications, 373, 44-52 (2016). [Google Scholar]
  21. J.Wu, et al., “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity”, APL Photonics, 2 056103 (2017). [Google Scholar]
  22. A. M. Weiner, “Microwave Photonic Filters Based on Optical Frequency Combs,” 2012 Ieee Photonics Conference (IPC), 296-297 (2012). [CrossRef] [Google Scholar]
  23. O. F. Yilmaz, et al., “True time delays using conversion/dispersion with flat magnitude response for wideband analog RF signals,” Optics Express, 20(8), 8219-8227 (2012). [CrossRef] [PubMed] [Google Scholar]
  24. R. Wu, et al., “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Optics Express, 21(5), 6045-6052 (2013). [CrossRef] [PubMed] [Google Scholar]
  25. A. J. Metcalf, et al., “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Selected Topics in Quantum Electronics, 19 (6), (2013). [CrossRef] [Google Scholar]
  26. E. Hamidi, et al., “Tunable Programmable Microwave Photonic Filters based on an Optical Frequency Comb,” IEEE Trans. on Microwave Theory, 58(11), 3269-3278 (2010). [CrossRef] [Google Scholar]
  27. L. Razzari, et al., “CMOS-compatible integrated optical hyper-parametric oscillator,” Nature Photonics, 4(1), 41-45 (2010). [Google Scholar]
  28. D. J. Moss, et al., “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nature Photonics, 7(8), 597-607 (2013). [Google Scholar]
  29. M. Ferrera, et al., “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nature Photonics, 2(12), 737-740 (2008). [Google Scholar]
  30. D. Duchesne, et al., “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Optics Express, 17(3), 1865-1870 (2009). [Google Scholar]
  31. M. Ferrera, et al., “Low power four wave mixing in an integrated, micro-ring resonator with Q=1.2 million,” Optics Express, 17(16), 14098-14103 (2009). [CrossRef] [PubMed] [Google Scholar]
  32. D. Duchesne, et al., “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Optics Express, 18(2), 923-930 (2010). [CrossRef] [PubMed] [Google Scholar]
  33. M. Ferrera, et al., “Ultra-Fast Integrated All-Optical Integrator”, Nature Communications, 1 Article 29 (2010). DOI:10.1038/ncomms1028 [Google Scholar]
  34. A. Pasquazi, et al., “All-optical wavelength conversion in an integrated ring resonator,” Optics Express, 18(4), 3858-3863 (2010). [CrossRef] [PubMed] [Google Scholar]
  35. A. Pasquazi, et al., “Efficient wavelength conversion and net parametric gain via FWM in a high index doped silica waveguide,” Optics Express, 18(8), 7634-7641 (2010). [CrossRef] [PubMed] [Google Scholar]
  36. M. Peccianti, et al., “Subpicosecond optical pulse compression via an integrated nonlinear chirper,” Optics Express, 18(8), 7625-7633 (2010). [CrossRef] [PubMed] [Google Scholar]
  37. J. S. Levy, et al., “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photonics, 4(1), 37-40 (2010). [Google Scholar]
  38. P. Del’Haye, et al., “Optical frequency comb generation from a monolithic microresonator,” Nature 450, (7173) 1214-1217 (2007). [Google Scholar]
  39. M.Peccianti, et al., “Demonstration of an ultrafast nonlinear microcavity modelocked laser”, Nature Communications, 3 765 (2012). [CrossRef] [PubMed] [Google Scholar]
  40. M.Kues, et. al., “Passively modelocked laser with an ultra-narrow spectral width”, Nature Photonics, 11 (3) 159 (2017). [Google Scholar]
  41. A. Pasquazi, et al., “Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip,” Optics Express, 21(11), 13333-13341 (2013). [CrossRef] [PubMed] [Google Scholar]
  42. A. Pasquazi, et al., “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Optics Express, 20(24), 27355-27362 (2012). [CrossRef] [PubMed] [Google Scholar]
  43. C. Reimer, et al., “Integrated frequency comb source of heralded single photons,” Optics Express, 22(6), 6535-6546 (2014). [CrossRef] [PubMed] [Google Scholar]
  44. C.Reimer, et al., “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip”, Nature Communications, 6 Article 8236 (2015). [CrossRef] [PubMed] [Google Scholar]
  45. L. Caspani, et al., “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs,” Nanophotonics, 5(2), 351-362 (2016). [Google Scholar]
  46. C. Reimer, et al., “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science, 351(6278), 1176-1180 (2016). [Google Scholar]
  47. M.Kues, et al., “On-chip generation of high-dimensional entangled quantum states and their coherent control”, Nature, 546 (7660) 622 (2017). [Google Scholar]
  48. P. Roztocki, M. Kues, C. Reimer et al., “Practical system for the generation of pulsed quantum frequency combs,” Optics Express, 25(16), 18940-18949 (2017). [CrossRef] [PubMed] [Google Scholar]
  49. T. G. Nguyen, et al., “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Optics Express, 23(17), 22087-22097 (2015). [CrossRef] [PubMed] [Google Scholar]
  50. X.Xu, et al., “Microwave Photonic All-optical Differentiator based on an Integrated Frequency Comb Source”, APL Photonics, 2 (9) 096104 (2017). [Google Scholar]
  51. X. X. Xue, et al., “Programmable Single-Bandpass Photonic RF Filter Based on Kerr Comb from a Microring,” IEEE J. of Lightwave Technology, 32(20), 3557-3565 (2014). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.