Open Access
Issue
EPJ Web Conf.
Volume 245, 2020
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
Article Number 01030
Number of page(s) 8
Section 1 - Online and Real-time Computing
DOI https://doi.org/10.1051/epjconf/202024501030
Published online 16 November 2020
  1. B. Abi, R. Acciarri, M.A. Acero, G. Adamov, D. Adams, M. Adinolfi, Z. Ahmad, J. Ahmed, J. Ahmed, T. Alion et al. (DUNE), Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume 1 Introduction to DUNE, in Far Detector Technical Design Report, Volume 1 Introduction to DUNE (2020), http://arxiv.org/abs/2002.02967 [Google Scholar]
  2. C. Adam-Bourdarios, G. Cowan, C. Germain, I. Guyon, B. Kégl, D. Rousseau, The Higgs boson machine learning challenge, in Proceedings of the NIPS 2014 Workshop on High-energy Physics and Machine Learning, edited by G. Cowan, C. Germain, I. Guyon, B. Kégl, D. Rousseau (PMLR, Montreal, Canada, 2015), Vol. 42 of Proceedings of Machine Learning Research, pp. 19–55, http://proceedings.mlr.press/v42/cowa14.html [Google Scholar]
  3. F. Carminati, G. Khattak, M. Pierini, A. Farbin, B. Hooberman, W. Wei, M. Zhang, V.B. Pacela, S. Vallecorsafac, M. Spiropulu et al., Calorimetry with Deep Learning: Particle Classification, Energy Regression, and Simulation for High-Energy Physics, in Calorimetry with Deep Learning: Particle Classification, Energy Regression, and Simulation for High-Energy Physics (2017) [Google Scholar]
  4. P. Baldi, P. Sadowski, D. Whiteson, Nature Communications 5 (2014) [Google Scholar]
  5. A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa, P. Vahle, Journal of Instrumentation 11, P09001 (2016) [CrossRef] [Google Scholar]
  6. L. Hertel, L. Li, P. Baldi, J. Bian, Convolutional Neural Networks for Electron Neutrino and Electron Shower Energy Reconstruction in the NOvA Detectors, in Convolutional Neural Networks for Electron Neutrino and Electron Shower Energy Reconstruction in the NOvA Detectors (2017) [Google Scholar]
  7. D. Strigl, K. Kofler, S. Podlipnig, Performance and scalability of GPU-based convolutional neural networks, in Proceedings of the 18th Euromicro Conference on Parallel, Distributed and Network-Based Processing, PDP 2010 (2010), pp. 317–324, ISBN 9780769539393 [Google Scholar]
  8. Google Cloud TPU System Architecture, https://cloud.google.com/tpu/docs/system-architecture [Google Scholar]
  9. S.M. Trimberger, Proceedings of the IEEE 103, 318 (2015) [CrossRef] [Google Scholar]
  10. G. Martin, G. Smith, IEEE Design and Test of Computers 26, 18 (2009) [CrossRef] [Google Scholar]
  11. J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis, J. Ngadiuba, M. Pierini, R. Rivera, N. Tran et al., Journal of Instrumentation 13 (2018) [Google Scholar]
  12. B. Abi, R. Acciarri, M.A. Acero, G. Adamov, D. Adams, M. Adinolfi, Z. Ahmad, J. Ahmed, T. Alion, S. Alonso Monsalve et al. (DUNE), Neutrino interaction classification with a convolutional neural network in the DUNE far detector (2020), http://arxiv.org/abs/2006.15052 [Google Scholar]
  13. B. Abi, R. Acciarri, M.A. Acero, G. Adamov, D. Adams, M. Adinolfi, Z. Ahmad, J. Ahmed, J. Ahmed, T. Alion et al. (DUNE), Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II DUNE Physics, in Far Detector Technical Design Report, Volume II DUNE Physics (2020), http://arxiv.org/abs/2002.03005 [Google Scholar]
  14. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 2016), Vol. 2016-December, pp. 770–778, ISBN 9781467388504, ISSN 10636919 [Google Scholar]
  15. A. Radovic, M. Williams, D. Rousseau, M. Kagan, D. Bonacorsi, A. Himmel, A. Aurisano, K. Terao, T. Wongjirad, Machine learning at the energy and intensity frontiers of particle physics (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.