Open Access
Issue
EPJ Web Conf.
Volume 245, 2020
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
Article Number 03017
Number of page(s) 8
Section 3 - Middleware and Distributed Computing
DOI https://doi.org/10.1051/epjconf/202024503017
Published online 16 November 2020
  1. I. Bird, Computing for the Large Hadron Collider, Annual Review of Nuclear and Particle Science, 61, 99-118 (2011) [Google Scholar]
  2. The ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, Journal of Instrumentation, 3, S08003 (2008) [Google Scholar]
  3. The CMS Collaboration, The CMS Experiment at the CERN LHC, Journal of Instrumentation, 3, S08004 (2008) [Google Scholar]
  4. CERN JIRA instance https://its.cern.ch/jira [Google Scholar]
  5. CERN Service Now portal https://cern.service-now.com/ [Google Scholar]
  6. GGUS https://ggus.eu/pages/home.php [Google Scholar]
  7. P. Tapia et al., “Implementing Operational AI in Telecom Environments”, Tupl White Paper (2018) [Google Scholar]
  8. T. Mikolov et al., Efficient estimation of word representations in vector space, arXiv preprint arXiv:1301.3781 (2013). [Google Scholar]
  9. E. Karavakis, A. Manzi, O. Keeble, M. Arsuaga Rios, “FTS improvements for LHC Run-3 and beyond”, 2020 in preparation for the proceedings of CHEP 2019 Conference, Adelaide (Australia) [Google Scholar]
  10. M. Ester, et al. A density-based algorithm for discovering clusters in large spatial databases with noise, Kdd, Vol 96 No. 34, p. 226-231 (1996) [Google Scholar]
  11. Q. Lin, et al., Log clustering based problem identification for online service systems, Proc. 38th Int. Conf. on Software Engineering Companion. ACM, p. 102-111 (2016) [Google Scholar]
  12. D. Arthur, S. Vassilvitskii, k-means++: The advantages of careful seeding. Proc. of the Annu. ACM-SIAM Symp. on Discrete Algorithms, 8, p. 1027-1035 (2007). [Google Scholar]
  13. Jobs Buster, https://bigpanda.cern.ch/oi/jobsbuster/?hours=12&jobtype=prod [Google Scholar]
  14. NATS https://nats.io/ [Google Scholar]
  15. VictoriaMetrics https://victoriametrics.com/ [Google Scholar]
  16. Prometheus https://prometheus.io [Google Scholar]
  17. Prometheus AlertManager https://prometheus.io/docs/alerting/alertmanager/ [Google Scholar]
  18. L. Giommi et al., “Towards Predictive Maintenance with Machine Learning at the INFN-CNAF computing centre”, Proceedings of International Symposium on Grids & Clouds 2019. [Google Scholar]
  19. L. Decker de Sousa et al., “Big Data Analysis for Predictive Maintenance at the INFNCNAF Data Center using Machine Learning Approaches”. Proceedings of the 25th Conference of Open Innovations Association FRUCT 2019. IEEE p. 448-451. Copyright 2020 CERN for the benefit of the ATLAS and CMS Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.