Open Access
Issue
EPJ Web Conf.
Volume 245, 2020
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
Article Number 09008
Number of page(s) 7
Section 9 - Exascale Science
DOI https://doi.org/10.1051/epjconf/202024509008
Published online 16 November 2020
  1. Top 500 site:https://www.top500.org/lists. [Google Scholar]
  2. H. J. Rothe, Quantum Gauge Theories: An Introduction, World Scientific, 1997. [CrossRef] [Google Scholar]
  3. Rajan Gupta. Introduction to Lattice QCD. arXiv:hep-lat/9807028 [Google Scholar]
  4. M. A. Clark, R. Babich, K. Barros, R. C. Brower, and C. Rebbi. Solving Lattice QCD systems of equations using mixed precision solvers on GPUs. Comput. Phys. Commun., 181:1517-1528, 2010. [Google Scholar]
  5. R. Babich, M. A. Clark, B. Joo, G. Shi, R. C. Brower, and S. Gottlieb. Scaling Lattice QCD beyond 100 GPUs. In SC11 International Conference for High Performance Computing, Networking, Storage and Analysis Seattle, Washington, November 12-18, 2011, 2011. [Google Scholar]
  6. M. A. Clark, Blint Jo, Alexei Strelchenko, Michael Cheng, Arjun Gambhir, and Richard Brower. Accelerating Lattice QCD Multigrid on GPUs Using Fine-Grained Parallelization. arXiv:1612.07873 [hep-lat]. [Google Scholar]
  7. Peter Boyle, Azusa Yamaguchi, Guido Cossu, and Antonin Portelli. Grid: A next generation data parallel C++ QCD library. arXiv:1512.0348 [hep-lat]. [Google Scholar]
  8. A. Alexandru, C. Pelissier, B. Gamari, and F. Lee. Multi-mass solvers for lattice QCD on GPUs. J. Comput. Phys., 231:1866-1878, 2012. [Google Scholar]
  9. Andrei Alexandru, Michael Lujan, Craig Pelissier, Ben Gamari, and Frank X. Lee. Efficient implementation of the overlap operator on multi-GPUs. In Proceedings, 2011 Symposium on Application Accelerators in High-Performance Computing (SAAHPC’11): Knoxville, Tennessee, July 19-20, 2011, pages 123-130, 2011. [Google Scholar]
  10. Owe Philipsen, Christopher Pinke, Alessandro Sciarra, and Matthias Bach. CL2QCD - Lattice QCD based on OpenCL. PoS, LATTICE2014:038, 2014. [Google Scholar]
  11. ROCm: https://rocm.github.io/ [Google Scholar]
  12. HIP: https://github.com/ROCm-Developer-Tools/HIP [Google Scholar]
  13. hipify tool: https://github.com/ROCm-Developer-Tools/HIPIFY [Google Scholar]
  14. Corresponding libs between ROCm and CUDA: HIP Porting Guide [Google Scholar]
  15. HSA Foundation website: http://www.hsafoundation.com/standards/ [Google Scholar]
  16. J Wu, A Belevich, and E Bendersky. gpucc: an open-source gpgpu compiler. Proceedings of the 2016 International Symposium on Code Generation and Optimization. ACM, 2016: 105-116, 2016. [CrossRef] [Google Scholar]
  17. M. A. Clark, A. Strelchenko, M. Cheng, A. Gambhir, and R. Brower, “Accelerating Lattice QCD Multigrid on GPUs Using Fine-Grained Parallelization,” International Conference for High Performance Computing, Networking, Storage and Analysis (SC), 2016 [arXiv:1612.07873 [hep-lat]]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.