Open Access
Issue |
EPJ Web Conf.
Volume 245, 2020
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
|
|
---|---|---|
Article Number | 09011 | |
Number of page(s) | 6 | |
Section | 9 - Exascale Science | |
DOI | https://doi.org/10.1051/epjconf/202024509011 | |
Published online | 16 November 2020 |
- Data and Software Preservation for Open Science (DASPOS); https://daspos.crc.nd.edu. [Google Scholar]
- DIANA/HEP website. http://diana-hep.org. [Google Scholar]
- REANA github:. http://reanahub.io/. [Google Scholar]
- See, for example, K. Cranmer, J. Brehmer, G. Louppe, arXiv:1911.01429 (2019); or K. Cranmer, J. Pavez, and G. Louppe, arXiv:1506.02169 (2015). [Google Scholar]
- G. Louppe, K. Cranmer, and J. Pavez, “carl: a likelihood-free inference toolbox”, J. Open Source Software (2016). [Google Scholar]
- P. Baldi, K. Cranmer, T. Faucett, P. Sadowski, and D. Whiteson, Eur. Phys. J., C76 (5):235 (2016). [CrossRef] [Google Scholar]
- J. Brehmer, G. Louppe, J. Pavez, and K. Cranmer, PNAS March 10, (2020) 117 (10) 5242-5249. [CrossRef] [Google Scholar]
- J. Brehmer, K. Cranmer, G. Louppe, and J. Pavez, Phys. Rev. D 98, 052004 (2018). [Google Scholar]
- J. Brehmer, K. Cranmer, G. Louppe, and J. Pavez, Phys. Rev. Lett. 121, 111801 (2018). [CrossRef] [PubMed] [Google Scholar]
- K. Cranmer and L. Heinrich, J. Phys. Conf. Ser., 898(10):102019 (2017). [Google Scholar]
- www.commonwl.org [Google Scholar]
- https://github.com/scailfin [Google Scholar]
- https://www.virtualclusters.org [Google Scholar]
- HTCondor: https://research.cs.wisc.edu/htcondor/ [Google Scholar]
- See K. Anampa, et al., “Abstracting container technologies and transfer mechanisms in the Scalable CyberInfrastructure for Artificial Intelligence and Likelihood Free Inference (SCAILFIN) project”, these Proceedings. [Google Scholar]
- BOSCO: https://osg-bosco.github.io/docs/ [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.