Open Access
Issue
EPJ Web Conf.
Volume 245, 2020
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
Article Number 09014
Number of page(s) 10
Section 9 - Exascale Science
DOI https://doi.org/10.1051/epjconf/202024509014
Published online 16 November 2020
  1. J. Han, J. Pei, M. Kamber, Data mining: concepts and techniques (Elsevier, 2011) [Google Scholar]
  2. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin et al., TensorFlow: Large-scale machine learning on heterogeneous systems (2015), software available from tensorflow.org, http://tensorflow.org/ [Google Scholar]
  3. F. Chollet et al., Keras, https://github.com/fchollet/keras (2015) [Google Scholar]
  4. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell, arXiv preprint arXiv:1408.5093 (2014) [Google Scholar]
  5. J. Dai, Y. Wang, X. Qiu, D. Ding, Y. Zhang, Y. Wang, X. Jia, C. Zhang, Y. Wan, Z. Li et al., arXiv e-prints arXiv:1804.05839 (2018), 1804.05839 [Google Scholar]
  6. T. Kurth, J. Zhang, N. Satish, I. Mitliagkas, E. Racah, M.A. Patwary, T. Malas, N. Sundaram, W. Bhimji, M. Smorkalov et al., arXiv e-prints arXiv:1708.05256 (2017), 1708.05256 [Google Scholar]
  7. Kurth Thorsten, Hep-cnn github repository, https://github.com/NERSC/hep_cnn_benchmark.git [Google Scholar]
  8. M. Mustafa, D. Bard, W. Bhimji, Z. Lukic´, R. Al-Rfou, J. Kratochvil, arXiv e-prints arXiv:1706.02390 (2017), 1706.02390 [Google Scholar]
  9. S.V.F. Carminati, G. Khattak, Presented at the 23rd international Conference on Computing in High Energy and Nuclear Physics (CHEP 2018). Proceedings in publication. (2018) [Google Scholar]
  10. Dell emc ai challenge, https://insidehpc.com/aichallenge [Google Scholar]
  11. E. Nurvitadhi, S. Subhaschandra, G. Boudoukh, G. Venkatesh, J. Sim, D. Marr, R. Huang, J.O.G. Hock, Y.T. Liew, K. Srivatsan et al., Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays FPGA 17 (2017) [Google Scholar]
  12. D. Wang, J. An, K. Xu, arXiv e-prints arXiv:1611.02450 (2016), 1611.02450 [Google Scholar]
  13. J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis, J. Ngadiuba, M. Pierini, R. Rivera, N. Tran et al., Journal of Instrumentation 13, P07027 (2018), 1804.06913 [CrossRef] [Google Scholar]
  14. Intel, Openvino toolkit, https://software.intel.com/en-us/openvino-toolkit [Google Scholar]
  15. DeePhi, Deephi dnndk, http://www.deephi.com/technology/dnndk [Google Scholar]
  16. T. Sjöstrand, S. Mrenna, P. Skands, Computer Physics Communications 178, 852 (2008) [Google Scholar]
  17. J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, M. Selvaggi, Journal of High Energy Physics 2014, 57 (2014), 1307.6346 [Google Scholar]
  18. Wikipedia, Wikipedia pseudorapidity, https://en.wikipedia.org/wiki/Pseudorapidity [Google Scholar]
  19. R.H.R. Hahnloser, R. Sarpeshkar, M.A. Mahowald, R.J. Douglas, H.S. Seung, Nature 405, 947 (2000) [CrossRef] [PubMed] [Google Scholar]
  20. K. He, X. Zhang, S. Ren, J. Sun, arXiv e-prints arXiv:1502.01852 (2015), 1502.01852 [Google Scholar]
  21. S. Ioffe, C. Szegedy, arXiv e-prints arXiv:1502.03167 (2015), 1502.03167 [Google Scholar]
  22. S. Agostinelli et al. (GEANT4), Nucl. Instrum. Meth. A506, 250 (2003) [CrossRef] [Google Scholar]
  23. P. Lebrun, L. Linssen, A. Lucaci-Timoce, D. Schulte, F. Simon, S. Stapnes, N. Toge, H. Weerts, J. Wells (2012), 1209.2543 [Google Scholar]
  24. M.S. Abdelfattah, D. Han, A. Bitar, R. DiCecco, S. OConnell, N. Shanker, J. Chu, I. Prins, J. Fender, A.C. Ling et al., arXiv e-prints arXiv:1807.06434 (2018), 1807.06434 [Google Scholar]
  25. C. Jiang, D. Ojika, T. Kurth, S. Vallecorsa, B. Patel, H. Lam et al., Acceleration of Scientific Deep Learning Models on Heterogeneous Computing Platform with Intel R FPGAs, in International Conference on High Performance Computing (Springer, 2019), pp. 587–600 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.