Open Access
Issue
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 02037
Number of page(s) 7
Section Core Analysis Methods
DOI https://doi.org/10.1051/epjconf/202124702037
Published online 22 February 2021
  1. B. S. Collins, et al., “Stability and Accuracy of 3D neutron Transport Simulations Using the 2D/1D Method in MPACT,” Journal of Computational Physics, 326, pp. 612–628 (2016). [Google Scholar]
  2. A. M. Graham, “Subgrid Methods for Resolving Axial Heterogeneity in Planar Synthesis Solutions for the Boltzmann Transport Equation,” PhD Dissertation, University of Michigan (2017). [Google Scholar]
  3. A. Graham et al., “Subplane Collision Probabilities Method Applied to Control Rod Cusping in 2D/1D,” Ann. Nucl. Energy, 118, pp. 1–14 (2018). [Google Scholar]
  4. S. G. Stimpson, B. S. Collins, and B. Kochunas. “Improvement of Transport-Corrected Scattering Stability and Performance Using a Jacobi Inscatter Algorithm for 2D-MOC,” Annals of Nuclear Energy, 105, pp. 1–10 (2017). [Google Scholar]
  5. S. G. Stimpson, Y. Liu, B. S. Collins, and K. Clarno. “A Lumped Parameter MOC Approach and Multigroup Kernels Applied to Subgroup Self-Shielding in MPACT,” Nuclear Engineering and Technology, 49, pp. 1240–1249 (2017). [Google Scholar]
  6. B. S. Collins and S. G. Stimpson. “Acceleration Method for Whole Core Reactor Simulations Using VERA.” Transaction of the American Nuclear Society, volume 118, pp. 929–932 (2018). [Google Scholar]
  7. S. G. Stimpson, A. Graham and B. Collins, “Enhancements to Subplane Capability in MPACT,” CASL-U-2018-1738-000, CASL, March 27, 2019. [Google Scholar]
  8. S. G. Stimpson, A. M. Graham and B. S. Collins, “Performance Improvements to the 2D/1D Subplane Method in MPACT,” M&C 2019, August 25–29, Portland OR (2019). [Google Scholar]
  9. S. G. Stimpson, A. M. Graham and B. S. Collins, “Subgrid Treatment of Spacer Grids in the 2D/1D Subplane Method in MPACT,” M&C 2019, August 25–29, Portland OR (2019). [Google Scholar]
  10. L. R. Cornejo, “Multilevel Methods with Multiple Grids in Energy for Multigroup Eigenvalue Transport Problems,” PhD Dissertation, North Carolina State University (2018). [Google Scholar]
  11. L. R. Cornejo and D. Y. Anistratov, “Multigrid Algorithms with Projection and Prolongation over Elements of the Phase Space for k-Eigenvalue Transport Problems,” M&C 2019, August 25–29, Portland OR (2019). [Google Scholar]
  12. L. R. Cornejo and D. Y. Anistratov. “Nonlinear Diffusion Acceleration Method with Multigrid Multiplicative Corrections for Multigroup Eigenvalue Transport Problems.” In Joint Int. Conf. on Math. and Comp. (M&C), Supercomp. in Nucl. Appl. (SNA) and the Monte Carlo (MC) Method, April 19–23, Nashville TN (2015). [Google Scholar]
  13. L. R. Cornejo and D. Y. Anistratov. “Nonlinear Diffusion Acceleration Method with Multigrid in Energy for k-Eigenvalue Neutron Transport Problems,” Nuclear Science and Engineering, volume 184, pp. 514–526 (2016). [Google Scholar]
  14. B. C. Yee, “A Multilevel in Space and Energy Solver for Multigroup Diffusion and Coarse Mesh Finite Difference Eigenvalue Problems,” PhD Dissertation, University of Michigan (2018). [Google Scholar]
  15. A. Godfrey, “VERA Core Physics Benchmark Progression Problem Specifications,” Revision 4, CASL-U-2012-0131-004, Revision 4, CASL, August 29, 2014. http://www.casl.gov/docs/CASL-U-2012-0131-004.pdf [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.