Open Access
Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 03006 | |
Number of page(s) | 8 | |
Section | Deterministic Transport | |
DOI | https://doi.org/10.1051/epjconf/202124703006 | |
Published online | 22 February 2021 |
- K. Smith. “Nodal method storage reduction by nonlinear iteration.” volume 44 (1983). [Google Scholar]
- N. Z. Cho, G. S. Lee, and C. J. Park. “On a new acceleration method for 3D whole-core transport calculations.” Genshikaku Kenkyu, volume 48(2), pp. 79–80 (2003). URL http://inis.iaea.org/Search/search.aspx?orig q=RN:35014836. [Google Scholar]
- A. Zhu, M. Jarrett, Y. Xu, B. Kochunas, E. Larsen, and T. Downar. “An optimally diffusive Coarse Mesh Finite Difference method to accelerate neutron transport calculations.” Annals of Nuclear Energy, volume 95, pp. 116–124 (2016). URL http://www.sciencedirect.com/science/article/pii/S030645491630250X. [Google Scholar]
- D. Wang and S. Xiao. “A Linear Prolongation Approach to Stabilizing CMFD.” Nuclear Science and Engineering, volume 190(1), pp. 45–55 (2018). URL https://doi.org/10.1080/00295639.2017.1417347. [CrossRef] [Google Scholar]
- L. Li, K. Smith, and B. Forget. “Techniques for Stabilizing Coarse-Mesh Finite Difference (CMFD) in Methods of Characteristics (MOC).” Prof Forget via Chris Sherratt (2015). URL http://dspace.mit.edu/handle/1721.1/109272. [Google Scholar]
- Y. Jung and H. Joo. “Decoupled planar MOC soluition for dynamic group constant generation in direct three-dimensional core calculations.” volume 4, pp. 2157–2167 (2009). [Google Scholar]
- N. Z. Cho. “The partial current based CMFD (p-CMFD) method revisited.” In Proceedings of the KNS autumn meeting, pp. 1CD–ROM. KNS, Korea, Republic of (2012). URL http://inis.iaea.org/Search/search.aspx?orig q=RN:44062577. [Google Scholar]
- B. Kochunas, B. Collins, D. Jabaay, T. Downar, and W. Martin. “Overview of development and design of MPACT: Michigan parallel characteristics transport code.” volume 1, pp. 42–53. American Nuclear Society - ANS, United States (2013). [Google Scholar]
- Q. Shen, Y. Xu, and T. Downar. “Stability analysis of the CMFD scheme with linear prolongation.” Annals of Nuclear Energy, volume 129, pp. 298–307 (2019). URL http://www.sciencedirect.com/science/article/pii/S0306454919300805. [Google Scholar]
- W. Boyd, S. Shaner, L. Li, B. Forget, and K. Smith. “The OpenMOC method of characteristics neutral particle transport code.” Annals of Nuclear Energy, volume 68, pp. 43–52 (2014). URL http://www.sciencedirect.com/science/article/pii/S0306454913006634. [Google Scholar]
- R. M. Ferrer and J. D. Rhodes. “The linear source approximation and particle conservation in the Method of Characteristics for isotropic and anisotropic sources.” Annals of Nuclear Energy, volume 115, pp. 209–219 (2018). URL http://www.sciencedirect.com/science/article/pii/S0306454918300203. [Google Scholar]
- E. Lewis, M. Smith, and N. Tsoulfanidis. “Benchmark specification for deterministic 2-D/3-D MOX fuel assembly transport calculations without spatial homogenisation (C5G7 MOX).” OECD/NEA Report (2001). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.