Open Access
Issue
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 03023
Number of page(s) 11
Section Deterministic Transport
DOI https://doi.org/10.1051/epjconf/202124703023
Published online 22 February 2021
  1. J. R. Tramm, K. S. Smith, B. Forget, and A. R. Siegel. “The Random Ray Method for neutral particle transport.” Journal of Computational Physics, volume 342, pp. 229 – 252 (2017). URL http://www.sciencedirect.com/science/article/pii/S0021999117303170. [Google Scholar]
  2. J. R. Tramm, K. S. Smith, B. Forget, and A. R. Siegel. “ARRC: A random ray neutron transport code for nuclear reactor simulation.” Annals of Nuclear Energy, volume 112(Supplement C), pp. 693–714 (2018). URL http://www.sciencedirect.com/science/article/pii/S0306454917303444. [Google Scholar]
  3. J. Tramm, B. Forget, and K. Smith. “Early experience in full core reactor simulation with The Random Ray Method.” In PHYSOR 2018: Reactor Physics Paving The Way Towards More Efficient Systems, pp. 486–497. Cancun (2018). [Google Scholar]
  4. J. R. Tramm. “Development of The Random Ray Method of neutral particle transport for high-fidelity nuclear reactor simulation.” Ph.D. thesis, Massachusetts Institute of Technology, Department of Nuclear Science and Engineering (2018). URL http://hdl.handle.net/1721.1/119038. [Google Scholar]
  5. C. J. Stanley and F. M. Marshall. “Advanced Test Reactor – A national scientific user facility.” In 16th International Conference on Nuclear Engineering (ICONE16) (2008). URL https://inldigitallibrary.inl.gov/sites/sti/sti/3991950.pdf. [Google Scholar]
  6. T. J. Tautges, P. P. H. Wilson, J. Kraftcheck, B. M. Smith, and D. L. Henderson. “Acceleration Techniques for Direct Use of CAD-Based Geometries in Monte Carlo Radiation Transport.” In International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009). American Nuclear Society, Saratoga Springs, NY (2009). [Google Scholar]
  7. X.-. M. C. Team. “MCNP—A General Monte Carlo N-Particle Transport Code, Version 5.” Technical Report LA-UR-03-1987, Los Alamos National Laboratory (2003). URL https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdffiles/la-ur-03-1987.pdf. [Google Scholar]
  8. S. Agostinelli et al. “Geant4—a simulation toolkit.” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, volume 506(3), pp. 250 – 303 (2003). URL http://www.sciencedirect.com/science/article/pii/S0168900203013688. [Google Scholar]
  9. P. K. Romano, N. E. Horelik, B. R. Herman, A. G. Nelson, and B. Forget. “OpenMC: A state-of-the-art Monte Carlo code for research and development.” Ann Nucl Energy, volume 82, pp. 90–97 (2015). https://doi.org/10.1016/j.anucene.2014.07.048. [Google Scholar]
  10. S. P. Hamilton and T. M. Evans. “Continuous-energy Monte Carlo neutron transport on GPUs in the Shift code.” Annals of Nuclear Energy, volume 128, pp. 236–247 (2019). URL http://www.sciencedirect.com/science/article/pii/S0306454919300167. [Google Scholar]
  11. A. T. Godfrey. “VERA core physics benchmark progression problem specifications, revision 4.” Technical Report CASL-U-2012-0131-004, Consortium for Advanced Simulation of Light Water Reactors (CASL) (2014). URL https://www.casl.gov/sites/default/files/docs/CASL-U-2012-0131-004.pdf. [Google Scholar]
  12. csimsoft. “Trelis.” URL http://csimsoft.com. [Google Scholar]
  13. J. Rhodes, K. Smith, and D. Lee. “CASMO-5 development and applications.” In ANS Topical Meeting on Reactor Physics (PHYSOR 2006), January 2006 (2006). [Google Scholar]
  14. B. R. Herman, B. Forget, K. Smith, and B. N. Aviles. “Improved diffusion coefficients generated from Monte Carlo codes.” In International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2013), pp. 2947–2961 (2013). [Google Scholar]
  15. A. T. Till. “Finite Elements with Discontiguous Support for Energy Discretization in Particle Transport.” Ph.D. thesis, Texas A&M University, College Station, TX (2015). URL https://oaktrust.library.tamu.edu/handle/1969.1/156427. [Google Scholar]
  16. I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst. “Embree: A Kernel Framework for Efficient CPU Ray Tracing.” ACM Trans Graph, volume 33(4), pp. 143:1–143:8 (2014). URL http://doi.acm.org/10.1145/2601097.2601199. [Google Scholar]
  17. P. Shriwise, A. Davis, and P. P. Wilson. “Leveraging Intel’s Embree Ray Tracing in the DAGMC Toolkit.” In Am. Nuc. Soc. Winter Meeting 2015, volume 113. Washington, DC, USA (2015). [Google Scholar]
  18. P. Shriwise and P. P. Wilson. “Reduced Precision Ray Tracing Performance Enhancements in the DAGMC Toolkit.” In Am. Nuc. Soc. Winter Meeting 2018, volume 119. Orlando, FL. USA (2018). [Google Scholar]
  19. J. R. Tramm, A. R. Siegel, and P. K. Romano. “An event-based algorithm for random ray neutral particle transport on GPUs.” In International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2019), pp. 2552–2563 (2019). [Google Scholar]
  20. J. Nielsen, D. Nigg, and A. LaPorta. “A fission matrix based validation protocol for computed power distributions in the advanced test reactor.” Nuclear Engineering and Design, volume 295 (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.