Open Access
Issue
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 04014
Number of page(s) 8
Section Monte Carlo Transport
DOI https://doi.org/10.1051/epjconf/202124704014
Published online 22 February 2021
  1. Sjenitzer, B., & Hoogenboom, E. (2013). Dynamic Monte Carlo Method for Nuclear Reactor Kinetics Calculations. Nuclear Science and Engineering, 175(1), 94–107. https://doi.org/10.13182/NSE12-44 [Google Scholar]
  2. Faucher, M., Mancusi, D., & Zoia, A. (2018). New kinetic simulation capabilities for TRIPOLI-4®: Methods and applications. Annals of Nuclear Energy, 120, 74–88. https://doi.org/10.1016/j.anucene.2018.05.030 [Google Scholar]
  3. Laureau, A., Aufiero, M., Rubiolo, P. R., Merle-Lucotte, E., & Heuer, D. (2015). Transient Fission Matrix: Kinetic calculation and kinetic parameters βeff and Λeff calculation. Annals of Nuclear Energy, 85, 1035–1044. https://doi.org/10.1016/j.anucene.2015.07.023 [Google Scholar]
  4. Laureau, A., Heuer, D., Merle-Lucotte, E., Rubiolo, P. R., Allibert, M., & Aufiero, M. (2017). Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach. Nuclear Engineering and Design, 316, 112–124. https://doi.org/10.1016/j.nucengdes.2017.02.022 [Google Scholar]
  5. Mickus, I. Roberts, J. A., & Dufek, J. (2019). Stochastic-deterministic response matrix method for reactor transients. Annals of Nuclear Energy, https://doi.org/10.1016/j.anucene.2019.107103 [Google Scholar]
  6. Leppänen, J. (2019). Acceleration of fission source convergence in the Serpent 2 Monte Carlo code using a response matrix based solution for the initial source distribution. Annals of Nuclear Energy, 128, 63–68. https://doi.org/10.1016/j.anucene.2018.12.044 [Google Scholar]
  7. Rahnema, F., & Pounders, J. (2014). A Coarse-Mesh Method for the Time-Dependent Transport Equation. Nuclear Science and Engineering, 176(3), 273–291. https://doi.org/10.13182/NSE12-108 [Google Scholar]
  8. Roberts, J. A. (2015). A High-Order, Time-Dependent Response Matrix Method for Reactor Kinetics. Nuclear Science and Engineering, 179(3), 333–341. https://doi.org/10.13182/NSE14-60 [Google Scholar]
  9. Sicilian, J. M., & Pryor, R. J. (1975). TRASCAL, a Two-Dimensional, Multigroup, Response Matrix Kinetics Code. In Proceedings of the Conference on Computational Methods in Nuclear Engineering; April 15-17. Charleston, South Carolina. [Google Scholar]
  10. Moriwaki, M., Ishii, K., Maruyama, H., & Aoyama, M. (1999). A new direct calculation method of response matrices using a monte carlo calculation. Journal of Nuclear Science and Technology, 36(10), 877–887. https://doi.org/10.1080/18811248.1999.9726278 [Google Scholar]
  11. Hoogenboom, J. E., Martin, W. R., Petrovic, B., 2011. Monte Carlo performance benchmark for detailed power density calculation in a full size reactor core. Benchmark specifications revision 1.2, July 2011. http://www.oecd-nea.org/dbprog/MonteCarloPerformanceBenchmark.htm [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.