Open Access
Issue
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 04016
Number of page(s) 7
Section Monte Carlo Transport
DOI https://doi.org/10.1051/epjconf/202124704016
Published online 22 February 2021
  1. Aarno Isotalo and Ville Sahlberg. Comparison of neutronics-depletion coupling schemes for burnup calculations. Nuclear Science and Engineering, 179(4):434–459, 2015. [Google Scholar]
  2. Aarno Isotalo. Comparison of neutronics-depletion coupling schemes for burnup calculations–continued study. Nuclear Science and Engineering, 180(3):286–300, 2015. [Google Scholar]
  3. Jan Dufek and Eduard Hoogenboom. Numerical stability of existing Monte Carlo burnup codes in cycle calculations of critical reactors. Nucl. Sci. Eng., 162(3):307–311, July 2009. [Google Scholar]
  4. Jan Dufek, Dan Kotlyar, Eugene Shwageraus, and Jaakko Leppänen. Numerical stability of the predictor-corrector method in Monte Carlo burnup calculations of critical reactors. Ann. Nucl. Energy, 56:34–38, 2013. [Google Scholar]
  5. Jan Dufek, Dan Kotlyar, and Eugene Shwageraus. The stochastic implicit Euler method – A stable coupling scheme for Monte Carlo burnup calculations. Ann. Nucl. Energy, 60(0):295 – 300, 2013. [Google Scholar]
  6. A.E. Isotalo and P.A. Aarnio. Higher order methods for burnup calculations with bateman solutions. Annals of Nuclear Energy, 38(9):1987 – 1995, 2011. [Google Scholar]
  7. A.E. Isotalo and P.A. Aarnio. Substep methods for burnup calculations with bateman solutions. Annals of Nuclear Energy, 38(11):2509 – 2514, 2011. [Google Scholar]
  8. Jan Dufek and Ville Valtavirta. Time step length versus efficiency of Monte Carlo burnup calculations. Annals of Nuclear Energy, 72:409 – 412, 2014. [Google Scholar]
  9. Jan Dufek and Ignas Mickus. Optimal time step length and statistics in Monte Carlo burnup simulations. Submitted to Annals of Nuclear Energy, 2019. [Google Scholar]
  10. Jaakko Leppänen, M Pusa, Tuomas Viitanen, Ville Valtavirta, and Toni Kaltiaisenaho. The serpent Monte Carlo code: Status, development and applications in 2013. volume 82, page 06021, 06 2014. [Google Scholar]
  11. R. J. Stamm’ler and M. J. Abbate. Methods of Steady-State Reactor Physics in Nuclear Design. Academic Press, London - New York, 1983. pp. 388. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.