Open Access
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 04020
Number of page(s) 11
Section Monte Carlo Transport
Published online 22 February 2021
  1. J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz. “XSBench - The Development and Verification of a Performance Abstraction for Monte Carlo Reactor Analysis.” In PHYSOR 2014 - The International Conference on Physics of Reactors: The Role of Reactor Physics toward a Sustainable Future (2014). [Google Scholar]
  2. P. K. Romano, N. E. Horelik, B. R. Herman, A. G. Nelson, and B. Forget. “OpenMC: A state-of-the-art Monte Carlo code for research and development.” Ann Nucl Energy, volume 82, pp. 90–97 (2015). [Google Scholar]
  3. J. R. Tramm, A. R. Siegel, B. Forget, and C. Josey. “Performance Analysis of a Reduced Data Movement Algorithm for Neutron Cross Section Data in Monte Carlo Simulations.” In EASC 2014 - International Conference on Exascale Applications and Software: Solving Software Challenges for Exascale (2014). [Google Scholar]
  4. J. Leppänen. “Two practical methods for unionized energy grid construction in continuous-energy Monte Carlo neutron transport calculation.” Annals of Nuclear Energy, volume 36(7), pp. 878–885 (2009). [Google Scholar]
  5. F. Brown. “New hash-based energy lookup algorithm for Monte Carlo codes.” Transactions of the American Nuclear Society, volume 111, pp. 659–662 (2014). [Google Scholar]
  6. C. Josey, P. Ducru, B. Forget, and K. Smith. “Windowed multipole for cross section Doppler broadening.” Journal of Computational Physics, volume 307, pp. 715–727 (2016). [Google Scholar]
  7. A. Siegel, K. Smith, P. Fischer, and V. Mahadevan. “Analysis of communication costs for domain decomposed Monte Carlo methods in nuclear reactor analysis.” Journal of Computational Physics, volume 231(8), pp. 3119–3125 (2012). [Google Scholar]
  8. K. Yoshii, J. Tramm, A. Siegel, and P. Beckman. “Improving the scalabiliy of neutron cross-section lookup codes on multicore NUMA system.” arXiv e-prints (2019). [Google Scholar]
  9. S. Perarnau, B. Videau, N. Denoyelle, F. Monna, K. Iskra, and P. Beckman. “Explicit Data Layout Management for Autotuning Exploration on Complex Memory Topologies.” In Workshop on Memory Centric High Performance Computing (MCHPC) (2019). [Google Scholar]
  10. B. Goglin. “Exposing the Locality of Heterogeneous Memory Architectures to HPC Applications.” In 1st ACM International Symposium on Memory Systems (MEMSYS16) (2016). [Google Scholar]
  11. D. Unat, J. Shalf, T. Hoefler, T. Schulthess, A. Dubey, and others (Eds.). “Programming Abstractions for Data Locality.” Technical report (2014). [Google Scholar]
  12. “Simplified Interface to Complex Memory.” (2017). [Google Scholar]
  13. L. Oden and P. Balaji. “Hexe: A Toolkit for Heterogeneous Memory Management.” In IEEE International Conference on Parallel and Distributed Systems (ICPADS) (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.