Open Access
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 04021
Number of page(s) 9
Section Monte Carlo Transport
Published online 22 February 2021
  1. D. Blanchet, L. Buiron, N. Stauff, T. K. Kim, T. Taiwo, AEN - WPRS Sodium Fast Reactor Core Definitions (v1.2), OECD/NEA, 19th September 2011. [Google Scholar]
  2. J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, “The Serpent Monte Carlo code: Satus, development and applications in 2013” Annals of Nuclear Energy, Volume 82, pp. 142-150 (2015). [Google Scholar]
  3. Terje Tverberg, Mixed-oxide (MOX) fuel performance benchmark, Summary of the Results for the Halden Reactor Project MOX Rods, NEA/NSC/DOC(2007)6, OECD HRP, 2007. [Google Scholar]
  4. П. Л. Киpиллов, Теплофзические свойства мотериалов ядерной техники - учебнео справочное пособие 2-е изд., Обнинский Институт Атомной Энергетики, Обнинск Russian Federation (2007). [Google Scholar]
  5. Ю. Г. Годин, А. В. Тенишев, Карбидное ядерное топливо, Московский Инженерно-Физический Институт, Москва Russian Federation (2007). [Google Scholar]
  6. L. Buiron et al., “Evaluation of Large 3600 MWth Sodium-Cooled Fast Reactor Neutronic OECD benchmarks” Proceedings of PHYSOR 2014, Kyoto, Japan, September 28 - October 3, (2014). [Google Scholar]
  7. E. Nikitin, E. Fridman, K. Mikityuk, “Solution of the OECD/NEA neutronic SFR benchmark with Serpent-DYN3D and Serpent-Parcs code systems” Annals of Nuclear Energy, Volume 75, pp. 492-497 (2014). [Google Scholar]
  8. E. Nikitin, E. Fridman, “Extension of the reactor dynamics code DYN3D to SFR applications - Part I: Thermal expansion models” Annals of Nuclear Energy, Volume 119, pp. 382-389 (2018). [Google Scholar]
  9. E. Fridman, “Generation of few-group constants with Serpent: Application examples” Proceedings of PHYSOR 2014, Kyoto, Japan, September 28 - October 3, (2014). [Google Scholar]
  10. B. Faure, G. Marleau, “Simulation of a sodium fast core: Effect of B1 leakage models on group constant generation” Annals of Nuclear Energy, Volume 99, pp. 484-494 (2017). [Google Scholar]
  11. V. Sahlberg, A. Rintala, “Development and first results of a new rectangular nodal diffusion solver of Ants” Proceedings of PHYSOR 2018, Cancún, Mexico, 22-26 April, (2018). [Google Scholar]
  12. A. Rintala, V. Sahlberg, “Extension of nodal diffusion solver of Ants to hexagonal geometry” Kerntechnik, Volume 84, pp. 252-261 (2019). [Google Scholar]
  13. N. Z. Cho, J. M. Noh, “Analytic function expansion nodal method for hexagonal geometry” Nuclear Science and Engineering, Volume 121, pp. 245-253 (2014). [Google Scholar]
  14. B. Xia, Z. Xie, “Flux expansion nodal method for solving multigroup neutron diffusion equations in hexagonal-z geometry” Annals of Nuclear Energy, Volume 33, pp. 370-376 (2006). [Google Scholar]
  15. E. Nikitin, E. Fridman, K. Mikityuk, “On the use of the SPH method in nodal diffusion analyses of SFR cores” Annals of Nuclear Energy, Volume 85, pp. 544-551 (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.