Open Access
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 06020
Number of page(s) 13
Section Advanced Modelling and Simulation
Published online 22 February 2021
  1. M. DeHart, F. Gleicher, V. Laboure, J. Ortensi, S. Schunert, Y. Wang, O. Calvin, and J. Harter. “MAMMOTH Theory Manual.” Technical Report INL/EXT-19-54252, Idaho National Laboratory (2019). [Google Scholar]
  2. A. Novak, L. Zou, J. Peterson, D. Andrs, J. Kelly, R. Slaybaugh, R. Martineau, and H. Gougar. “Pronghorn Theory Manual.” INL External Report INL/EXT-18-44453, Idaho National Laboratory (2018). [Google Scholar]
  3. A. Novak, J. Peterson, L. Zou, D. Andrs, R. Slaybaugh, and R. Martineau. “Validation of Pronghorn friction-dominated porous media thermal-hydraulics model with the SANA experiments.” Nuclear Engineering and Design, volume 350, pp. 182 – 194 (2019). URL [Google Scholar]
  4. A. Novak, R. Slaybaugh, and R. Martineau. “Multiscale Core Thermal-Hydraulics Analysis of the Pebble Bed Fluoride-Salt-Cooled High-Temnperature Reactor (PB-FHR).” In Proceeding of Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M&C 2019. Portland, Oregon (2019). [Google Scholar]
  5. D. R. Gaston, C. J. Permann, J.W. Peterson, A. E. Slaughter, D. Andrs, Y.Wang, M. P. Short, D. M. Perez, M. R. Tonks, J. Ortensi, L. Zou, and R. C. Martineau. “Physics-based multiscale coupling for full core nuclear reactor simulation.” Annals of Nuclear Energy, volume 84, pp. 45–54 (2015). [Google Scholar]
  6. Y. Wang, S. Schunert, and V. Laboure. Rattlesnake Theory Manual. INL (2017). [Google Scholar]
  7. Y. Wang, S. Schunert, M. DeHart, R. Martineau, and W. Zheng. “Hybrid PN - SN with Lagrange multiplier and upwinding for the multiscale transport capability in Rattlesnake.” Progress in Nuclear Energy (2017). [Google Scholar]
  8. J. Ortensi, S. Schunert, Y. Wang, V. Laboure, F. Gleicher, and R. Martineau. “Analysis of the HTR-10 Initial Critical Core with the MAMMOTH Reactor Physics Application.” ANS Winter Meeting 2018, Orlando, Fl (2018). [Google Scholar]
  9. OECD/NEA. “PBMR Coupled Neutronics/Thermal-hydraulics Transient Benchmark The PBMR-400 Core Design.” Technical Report NEA/NSC/DOC(2013)10, OECD/NEA (2013). [Google Scholar]
  10. W. Bernnat and W. Feltes”. “Models for reactor physics calculations for HTR pebble bed modular reactors”.” Nuclear Engineering and Design”, volume 222”(2”), pp. 331 – 347” (2003”). URL”. HTR-2002 1st international topical meeting on High Temperature reactor technology”. [Google Scholar]
  11. V. Seker. Multiphysics methods development for high temperature gas reactor analysis. Ph.D. thesis, Purdue University (2007). [Google Scholar]
  12. J. Ortensi, H. Gougar, P. Mkhabela, J. Han, B. Tyobeka, and K. Ivanov. “PBMR 400 Coupled Code Benchmark: Challenges and Successes With NEM-THERMIX.” ANS Winter Meeting 2006, Nashville, TN (2006). [Google Scholar]
  13. E. Teuchert et al. “V.S.O.P (94) Computer Code System for Reactor Physics and Fuel Cycle Simulation.” Technical Report Research Report Ju lich-289, Forschungszentrum Ju ichl (1994). [Google Scholar]
  14. H. Gougar. “The Application of the PEBBED Code Suite to the PBMR-400 Coupled Code Benchmark.” Technical Report INL/EXT-06-11842, Idaho National Laboratory (2006). [Google Scholar]
  15. G. Strydom. “TINTE Transient Results for the OECD 400 MW PBMR Benchmark.” ICAPP 2008, Anaheim, CA (2008). [Google Scholar]
  16. T. Newton and J. Hutton. “THE NEXT GENERATION WIMS LATTICE CODE : WIMS9.” PHYSOR 2002, Seoul, Korea (2002). [Google Scholar]
  17. J. J. J. Lee, Seung Wook and W. J. Lee. “Thermal-Hydraulic Analysis of OECD Benchmark Problem for PBMR 400 Using MARS-GCR.” (2006). [Google Scholar]
  18. F. Gleicher, J. Ortensi, Y. Wang, S. Schunert, S. Novascone, J. Hales, R. Williamson, A. Slaughter, C. Permann, D. Andrs, and R. Martineau. “The Application of MAMMOTH for a Detailed Tightly Coupled Fuel Pin Simulation with a Station Blackout.” In Top Fuel 2016 - LWR Fuels with Enhanced Safety Performance. Boise, ID, USA (2016). [Google Scholar]
  19. Y. Wang, S. Schunert, J. Ortensi, F. N. Gleicher, V. M. Laboure, B. A. Baker, M. DeHart, and R. C. Martineau. “Demonstration of MAMMOTH Strongly-Coupled Multiphysics Simulation with the Godiva Benchmark Problem.” In Mathematics and Computation 2017. Jeju, Korea (2017). [Google Scholar]
  20. V. Laboure, J. Ortensi, Y. Wang, S. Schunert, F. Gleicher, M. DeHart, and R. Martineau. “Multiphysics Steady-state simulation of the High Temperature Test Reactor with MAMMOTH, BISON and RELAP-7.” In Mathematics and Computation 2019. Portland, OR, USA (2019). [Google Scholar]
  21. F. Reitsma, J. Han, and K. Ivanov. “The OECD/NEA/NSC PBMR400 MW coupled neutronics thermal hydraulics transient benchmark Steady-state cases and results.” presented at the OECD/NEA/NSC PBMR coupled neutronics/thermal hydraulics transient benchmark the PBMR-400 core design - 5th Workshop, Interlaken, Switzerland (2008). [Google Scholar]
  22. S.W. Lee, H. C. Lee, J. J. Jeong, J. M. Noh, and W. J. Lee. “Thermal Hydraulic and Coupled Calculation of OECD/NEA PBMR-400 Benchmark Problem with MARS-GCR and CAPP.” presented at the OECD/NEA/NSC PBMR coupled neutronics/thermal hydraulics transient benchmark the PBMR-400 core design - 3rdWorkshop, Issy-les-Moulineaux, France (2007). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.