Open Access
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 06037
Number of page(s) 8
Section Advanced Modelling and Simulation
Published online 22 February 2021
  1. A. Kavenoky. “The SPH homogenization method.” Procedings of a Specialists’ Meeting on Homogenization Methods in Reactor Physics (1978). [Google Scholar]
  2. A. Hébert. “A Consistent Technique for the Pin-by-Pin Homogenization of a Pressurized Water Reactor Assembly.” Nucl Sci Eng, volume 113(3), pp. 227–238 (1993). [Google Scholar]
  3. K. Koebke. “A New Approach to Homogenization and Group Condensation.” IAE-ATECDOC, (231), p. 303 (1980). [Google Scholar]
  4. K. Koebke and L. Hetzelt. “On the Reconstruction of Local Homogeneous Neutron Flux and Current Distributions of Light Water Reactors from Nodal Schemes.” Nucl Sci Eng, volume 91, pp. 123–131 (1985). [Google Scholar]
  5. K. Smith. “Assembly homogenization techniques for light water reactor analysis.” Progress in Nuclear Energy, volume 17(3), pp. 303 – 335 (1986). [Google Scholar]
  6. R. Sanchez. “Assembly homogenization techniques for core calculations.” Progress in Nuclear Energy, volume 51(1), pp. 14 – 31 (2009). [Google Scholar]
  7. R. Sanchez, G. Dante, and I. Zmijarevic. “Diffusion Piecewise Homogenization via Flux Discontinuity Ratios.” Nucl Eng Technol, volume 45(6), pp. 707 – 720 (2013). [Google Scholar]
  8. F. Rahnema and E. M. Nichita. “Leakage corrected spatial (assembly) homogenization technique.” Ann Nucl Energy, volume 24(6), pp. 477 – 488 (1997). [Google Scholar]
  9. F. Rahnema,, and M. Mckinley. “High-order cross-section homogenization method.” Ann Nucl Energy, volume 29, pp. 875–899 (2002). [Google Scholar]
  10. T. Takeda, K. Kirimuraand, and Y. Fujita. “Leakage Dependent SPH Factor for PWR Whole Core Transport Calculation.” Int Conf of the Physics of Reactors Nuclear Power: A Sustainable Resource (September 2008). [Google Scholar]
  11. P. Mondot and R. Sanchez. “An iterative homogenization technique that preserves assembly core exchanges.” International conference on supercomputing in nuclear applications SNA’2003 (2003). [Google Scholar]
  12. D. Colameco, B. Ivanov, D. Beacon, and K. Ivanov. “Iterative Transport-Diffusion Methodology for LWR Core Analysis.” SNA+MC 2013, volume 41 (2014). [Google Scholar]
  13. M. Grimod, R. Sanchez, and F. Damian. “A dynamic homogenization model for pebble bed reactors.” Nuclear Science and Technology, volume 52, pp. 932 – 944 (2015). [Google Scholar]
  14. A. Galia, I. Zmijarevic, and R. Sanchez. “2D Core Calculation based on the method of Dynamic Homogenization.” Proceedings of M&C 2019, Portland, OR (August 2019). [Google Scholar]
  15. T. Kozlowski and T. J. Downar. “PWR MOX/UO2 Core Transient Benchmark (Final Report).” NEA/NSC/DOC(2006)20, volume 6048 (2007). [Google Scholar]
  16. R. Sanchez, I. Zmijarevic, M. Coste-Delclaux, E. Masiello, S. Santandrea, E. Martinolli, L. Villate, N. Schwartz, and N. Guler. “APOLLO2 Year 2010.” Nucl Eng Technol, volume 42(5) (October 2010). [Google Scholar]
  17. E. Masiello, R. Sanchez, and I. Zmijarevic. “New Numerical Solution with the Method of Short Characteristics for 2-D Heterogeneous Cartesian Cells in the APOLLO2 Code: Numerical Analysis and Tests.” Nucl Sci Eng, volume 161(3), pp. 257–278 (2009). [Google Scholar]
  18. Y. S. Ban, E. Masiello, R. Lenain, H. G. Joo, and R. Sanchez. “Code-to-code comparisons on spatial solution capabilities and performances between nTRACER and the standalone IDT solver of APOLLO3®.” Ann Nucl Energy, volume 115, pp. 573 – 594 (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.