Open Access
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 18006
Number of page(s) 8
Section Fusion Reactor Technology
Published online 22 February 2021
  1. Y. Wu, Z. Chen, L. Hu, et al. Identification of safety gaps for fusion demonstration reactors[J]. Nature Energy, 2016 (1): 16154. [Google Scholar]
  2. Y. Wu. Fusion Neutronics [M]. Springer, 2017. [Google Scholar]
  3. U. Fischer, C. Bachmann, J. C. Jaboulay, et al. Neutronic performance issues of the breeding blanket options for the European DEMO fusion power plant [J]. Fusion Engineering and Design, 2016, 109–111: 1463-1485. [Google Scholar]
  4. U. Fischer, et al. Neutronics requirements for a DEMO power plant [J]. Fusion Engineering and Design, 2015, 98–99: 2134-2137. [Google Scholar]
  5. U. Fischer, C. Bachmannb, B. Bienkowsk, et al. Neutronic analyses and tools development efforts in the European DEMO programme [J]. Fusion Engineering and Design, 2014, 89: 1880-1884. [Google Scholar]
  6. Y. Wu. Multifunctional Neutronics Calculation Methodology and Program for Nuclear Design and Radiation Safety Evaluation[J]. Fusion Science and Technology, 2018, 74(4): 321-329. [Google Scholar]
  7. Y. Wu, FDS Team. CAD-based Interface Programs for fusion neutron transport simulation[J]. Fusion Engineering and Design, 2009, 84: 1987-1992. [Google Scholar]
  8. Y. Wu, J. Song, H. Zheng, et al. CAD-based Monte Carlo Program for Integrated Simulation of Nuclear System SuperMC[J]. Annals of Nuclear Energy, 2015, 82: 161-168. [Google Scholar]
  9. S. Yu, B. Wu, J. Song, et al. Bi-level spatial subdivision based monte carlo ray tracing directly using CAD models[J]. Fusion Engineering and Design, 2017, 122: 211-217. [Google Scholar]
  10. S. Zhang, S. Yu, P. He. Verification of SuperMC with ITER C-Lite neutronic model[J]. Fusion Engineering and Design, 2016, 113: 126-130. [Google Scholar]
  11. G. Federicia, C. Bachmanna, L. Barucca, et al. DEMO design activity in Europe: Progress and updates [J]. Fusion Engineering and Design, 2018, 136: 729–741. [Google Scholar]
  12. G. Federici, C. Bachmann, W. Biel, et al. Overview of the design approach and prioritization of R&D activities towards an EU DEMO [J]. Fusion Engineering and Design, 2016, 109–111: 1464–1474. [Google Scholar]
  13. G. Federici, R. Kemp, D. Ward, et al. Overview of EU DEMO design and R&D activities [J]. Fusion Engineering and Design, 2014, 89: 882–889. [Google Scholar]
  14. L.V. Boccaccini, G. Aiello b, J. Aubert, et al. Objectives and status of EUROfusion DEMO blanket studies [J]. Fusion Engineering and Design, 2016, 109–111: 1199–1206. [Google Scholar]
  15. F. A. Hernández, F. Arbeiter, L. V. Boccaccini, et al. Overview of the HCPB Research Activities in EUROfusion [J]. IEEE Transactions on Plasma Science, 2018, 46(6): 2247-2261. [Google Scholar]
  16. P. Pereslavtsev, L. Lu, U. Fischer, et al. Neutronic analyses of the HCPB DEMO reactor using a consistent integral approach [J]. Fusion Engineering and Design, 2014, 89: 1979–1983. [Google Scholar]
  17. J. Aubert, G. Aiello, P. Arena, et al. Status of the EU DEMO HCLL breeding blanket design development [J]. Fusion Engineering and Design, 2018, 136: 1428–1432. [Google Scholar]
  18. F. Moroa, A. D. Nevob, D. Flamminia, et al. Neutronic analyses in support of the WCLL DEMO design development [J]. Fusion Engineering and Design, 2018, 136: 1260–1264. [Google Scholar]
  19. I. Palermo, G. Veredas, J.M. Gómez-Ros, et al. Neutronic design studies of a conceptual DCLL fusion reactor for a DEMO and a commercial power plant [J]. Nuclear Fusion, 2016, 56: 016001(30pp). [Google Scholar]
  20. 5-X Monte Carlo Team, MCNP – A General Monte Carlo N-Particle Transport Code (Version 5, Vol. II: User’s Guide), Los Alamos National Laboratory, 2003, Report LA-UR-03-0245, 24 April (revised 2/1/2008). [Google Scholar]
  21. P. Pereslavtsev, U. Fischer, F. Hernandez, et al. Neutronic analyses for the optimization of the advanced HCPB breeder blanket design for DEMO [J]. Fusion Engineering and Design, 2017, 124: 910–914. [Google Scholar]
  22. C. Fausser, A. L. Puma, F. Gabriel, et al. Tokamak D-T neutron source models for different plasma physics confinement modes [J]. Fusion Engineering and Design, 2012, 87: 787–792. [Google Scholar]
  23. A. Hogenbirk. An easy way to perform a radiation damage calculation in a complicated geometry [J]. Fusion Engineering and Design, 2008, 83s: 1828–1831. [Google Scholar]
  24. R. L. Greenwood, R. K. Smither. SPECTER: neutron damage calculations for materials irradiations [R]. Argonne National Laboratory, Fusion Power Program, 1985. [Google Scholar]
  25. B. Kiderowski, A. Ibrahim, Evaluating the efficiency of estimating numerous Monte Carlo tallies [J]. Transactions American Nuclear Society, 2011, 104: 325-238. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.