Open Access
EPJ Web Conf.
Volume 250, 2021
DYMAT 2021 - 13th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 05014
Number of page(s) 6
Section Metallic Materials
Published online 09 September 2021
  1. Ozdemir, Z.; Hernandez-Nava, E.; Tyas, A.; Warren, J.A.; Fay, S.D.; Goodall, R.; Todd, I.; Askes, H. Energy absorption in lattice structures in dynamics: Experiments. International Journal of Impact Engineering 2016, 89, 49–61. doi: 10.1016/j.ijimpeng.2015.10.007. [Google Scholar]
  2. Li, S.; Zhao, S.; Hou, W.; Teng, C.; Hao, Y.; Li, Y.; Yang, R.; Misra, R.D.K. Functionally Graded Ti-6Al-4V Meshes with High Strength and Energy Absorption. Advanced Engineering Materials 2016, 18, 34–38. doi: 10.1002/adem.201500086. [Google Scholar]
  3. Tancogne-Dejean, T.; Spierings, A.B.; Mohr, D. Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading. Acta Materialia 2016, 116, 14–28. doi: 10.1016/j.actamat.2016.05.054. [Google Scholar]
  4. Tsouknidas, A.; Pantazopoulos, M.; Katsoulis, I.; Fasnakis, D.; Maropoulos, S.; Michailidis, N. Impact absorption capacity of 3D-printed components fabricated by fused deposition modelling. Materials and Design 2016, 102, 41–44. doi: 10.1016/j.matdes.2016.03.154. [Google Scholar]
  5. Vorel, M.; Hinsch, S.; Konopka, M.; Scheerer, M. AlMgSc alloy 5028 status of maturation 2017. p. 9 pages. Publisher: Proceedings of the 7th European Conference for Aeronautics and Space Sciences. Milano, Italy, 3-6 july (2017). doi: 10.13009/EUCASS2017-633. [Google Scholar]
  6. Royset, J. Scandium In Aluminium Alloys: PhysicalMetallurgy, Properties And Applications. Metallurgical Science and Tecnology 2007, 25. Number: 2. [Google Scholar]
  7. Lee, W.S.; Chen, T.H. Dynamic Mechanical Response and Microstructural Evolution of High Strength Aluminum-Scandium (Al-Sc) Alloy. Mater. Trans. 2006, 47, 355–363. doi: 10.2320/matertrans.47.355. [Google Scholar]
  8. Yamada, H.; Kami, T.; Mori, R.; Kudo, T.; Okada, M. Strain Rate Dependence of Material Strength in AA5xxx Series Aluminum Alloys and Evaluation of Their Constitutive Equation. Metals 2018, 8, 576. doi: 10.3390/met8080576. [Google Scholar]
  9. Ganzenmüller, G.C.; Blaum, E.; Mohrmann, D.; Langhof, T.; Plappert, D.; Ledford, N.; Paul, H.; Hiermaier, S. A Simplified Design for a Split-Hopkinson Tension Bar with Long Pulse Duration. Procedia Engineering 2017, 197, 109–118. doi: 10.1016/j.proeng.2017.08.087. [CrossRef] [Google Scholar]
  10. Koutny, D.; Skulina, D.; Panteˇlejev, L.; Paloušek, D.; Lenczowski, B.; Palm, F.; Nick, A. Processing of Al-Sc aluminum alloy using SLM technology. Procedia CIRP 2018, 74, 44–48. doi: 10.1016/j.procir.2018.08.027. [Google Scholar]
  11. Lee, W.S.; Chen, T.H. Dynamic Deformation Behaviour and Microstructural Evolution of High-Strength Weldable Aluminum Scandium (Al-Sc) Alloy. Mater. Trans. 2008, 49, 1284–1293.doi: 10.2320/matertrans.MRA2008032. [Google Scholar]
  12. Kami, T.; Yamada, H.; Ogasawara, N. Dynamic Behaviour of Al-Mg Aluminum Alloy at a Wide Range of Strain Rates. EPJ Web of Conferences 2018, 183, 02028. doi: 10.1051/epjconf/201818302028. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.