Open Access
Issue
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
Article Number 03004
Number of page(s) 11
Section Offline Computing
DOI https://doi.org/10.1051/epjconf/202125103004
Published online 23 August 2021
  1. I. Abt et al., The H1 detector at HERA, Nucl. Instrum. Meth. A 386 (1997) 310 [Google Scholar]
  2. I. Abt et al., The tracking, calorimeter and muon detectors of the H1 experiment at HERA, Nucl. Instrum. Meth. A 386 (1997) 348 [Google Scholar]
  3. A. Accardi et al., Electron Ion Collider: The next QCD frontier, Eur. Phys. J. A 52 (2016) 268 [CrossRef] [EDP Sciences] [Google Scholar]
  4. P. Agostini et al., The Large Hadron-Electron Collider at the HL-LHC, arXiv arXiv:2007.14491 [Google Scholar]
  5. D. Anderle et al., Electron-Ion Collider in China, arXiv arXiv:2102.09222 [Google Scholar]
  6. V. Blobel, BOS and related packages, Proc. 14th Workshop of the INFN Eloisatron Project; Data Structures for Particle Physics Experiments: Evolution or Revolution, Erice, Italy (1990), p. 1–6 [Google Scholar]
  7. V. Blobel, The F-package for input/output, Proc. 6th Int. Conf. on Computing in High Energy Physics (CHEP 1992), Annecy, France (1992), p. 755–758 [Google Scholar]
  8. R. Brun et al., GEANT 3, CERN DD/EE 84-1 (1984) [Google Scholar]
  9. D. A. Duce, The graphical kernel system (GKS) ISO 7942, Computer Standards & Interfaces, Vol. 6, Issue 2 (1987) p. 235–237, DOI: doi: 10.1016/0920-5489(87)90065-1 [Google Scholar]
  10. CERN Program Library, CERNLIB, URL: https://cernlib.web.cern.ch/cernlib/ [accessed 2021-02-24] [Google Scholar]
  11. U. Berthon et al., New data analysis environment in H1, Proc. 11th Int. Conf. on Computing in High Energy and Nuclear Physics (CHEP 2000), Padua, Italy (2000), p. 700–703 [Google Scholar]
  12. M. Peez, The new object oriented analysis framework for H1, Proc. 13th Int. Conf. on Computing in High Energy and Nuclear Physics (CHEP 2003), La Jolla, USA (2003), arXiv arXiv:physics/0306124 [Google Scholar]
  13. J. Katzy, H1OO: An analysis framework for H1, Proc. 14th Int. Conf. on Computing in High Energy and Nuclear Physics (CHEP 2005), Interlaken, Switzerland (2004), DOI: doi: 10.5170/CERN-2005-002.265 [Google Scholar]
  14. M. Steder, H1OO: A centralised analysis framework for the H1 experiment, Proc. 18th Int. Conf. on Computing in High Energy and Nuclear Physics (CHEP 2010), Taipei, Taiwan (2010), J. Phys.: Conf. Ser. 331 032051 (2011), DOI: doi: 10.1088/1742-6596/331/3/032051 [Google Scholar]
  15. P. Laycock, Ten years of object-oriented analysis on H1, Proc. 14th Int. Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011), Uxbridge, UK (2011), J. Phys.: Conf. Ser. 368 012048 (2012), DOI: doi: 10.1088/1742-6596/368/1/012048 [Google Scholar]
  16. ROOT: Data Analysis Framework, URL: https://root.cern/ [accessed 2021-02-24] [Google Scholar]
  17. Data Preservation in High Energy Physics, DPHEP, URL: https://dphep.org/ [accessed 2021-02-24] [Google Scholar]
  18. D. Asner et al. [DPHEP Study Group], Data preservation in high energy physics, arXiv arXiv:0912.0255 [Google Scholar]
  19. Z. Akopov et al. [DPHEP Study Group], Status report of the DPHEP Study Group: Towards a global effort for sustainable data preservation in high energy physics, arXiv arXiv:1205.4667 [Google Scholar]
  20. D. M. South, Data preservation in high energy physics, Proc. 18th Int. Conf. on Computing in High Energy and Nuclear Physics (CHEP 2010), Taipei, Taiwan (2010), J. Phys.: Conf. Ser. 331 012005 (2011), DOI: doi: 10.1088/1742-6596/331/1/012005 [Google Scholar]
  21. D. M. South, Data preservation and long term analysis in high energy physics, Proc. 19th Int. Conf. on Computing in High Energy and Nuclear Physics (CHEP 2012) New York, USA (2012), J. Phys.: Conf. Ser. 396 062018 (2012), DOI: doi: 10.1088/1742-6596/396/6/062018 [Google Scholar]
  22. D. M. South and M. Steder, The H1 data preservation project, Proc. 19th Int. Conf. on Computing in High Energy and Nuclear Physics (CHEP 2012) New York, USA (2012), J. Phys.: Conf. Ser. 396 062019 (2012), DOI: doi: 10.1088/1742-6596/396/6/062019 [Google Scholar]
  23. A. Campbell et al., A dataflow meta-computing framework for event processing in the H1 experiment, Proc. 12th Int. Conf. on Computing in High Energy and Nuclear Physics (CHEP 2001), Bejing, China (2001), p. 651–655 [Google Scholar]
  24. S. Dagoret-Campagne et al., Reprocessing H1 data on the IN2P3 computer farm in 1997, Proc. 9th Int. Conf. on Computing in High Energy and Nuclear Physics (CHEP 1997), Berlin, Germany (1997). [Google Scholar]
  25. dCache: Distributed Storage for Scientific Data, URL: https://dcache.org [accessed 2021-02-24] [Google Scholar]
  26. M. Cacciari and G. P. Salam, Dispelling the N3 myth for the kt jet-finder, Phys. Lett. B 641 57 (2006), DOI: doi: 10.1016/j.physletb.2006.08.037 [CrossRef] [Google Scholar]
  27. M. Feindt and U. Kerzel, The NeuroBayes neural network package, Proc. 10th Int. Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2005), Zeuthen, Germany (2005), Nucl. Instrum. Meth. A 559 190 (2006), DOI: doi: 10.1016/j.nima.2005.11.166 [Google Scholar]
  28. D. Ozerov and D. M. South, A validation framework for the long term preservation of high energy physics data, Proc. 20th Int. Conf. on Computing in High Energy and Nuclear Physics (CHEP 2013) Amsterdam, Netherlands (2013), J. Phys.: Conf. Ser. 513 042043 (2014), DOI: doi: 10.1088/1742-6596/513/4/042043 [Google Scholar]
  29. A. Pfeiffer, Overview of the LCG applications area software projects, Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2004), Rome, Italy (2004), DOI: doi: 10.1109/NSS-MIC.2004.1462660 [Google Scholar]
  30. S. Roiser, A. Gaspar, Y. Perrin and K. Kruzelecki, Servicing HEP experiments with a complete set of ready integrated and configured common software components, Proc. 17th Int. Conf. on Computing in High Energy and Nuclear Physics (CHEP 2009), Prague, Czech Republic (2009), J. Phys.: Conf. Ser. 219 042022 (2010), DOI: doi: 10.1088/1742-6596/219/4/042022 [Google Scholar]
  31. A. L. Hodgkins, V. Diez and B. Hegner, LCG/AA build infrastructure, J. Phys.: Conf. Ser. 396, 052026 (2012), DOI: doi: 10.1088/1742-6596/396/5/052026 [Google Scholar]
  32. P. Buncic et al., CernVM: A virtual software appliance for LHC applications, Proc. 17th Int. Conf. on Computing in High Energy and Nuclear Physics (CHEP 2009), Prague, Czech Republic (2009), J. Phys.: Conf. Ser. 219 042003 (2010), DOI: doi: 10.1088/1742-6596/219/4/042003 [Google Scholar]
  33. M. Galli, E. Tejedor, and S. Wunsch, A new PyROOT: Modern, interoperable and more pythonic, Proc. 24th Int. Conf. on Computing in High Energy and Nuclear Physics (CHEP 2019), Adelaide, Australia (2019), EPJ Web Conf. 245 06004 (2020), DOI: doi: 10.1051/epjconf/202024506004 [Google Scholar]
  34. J. Blomer et al., New directions in the CernVM file system, Proc. 22nd Int. Conf. on Computing in High Energy and Nuclear Physics (CHEP 2016), San Francisco, USA, (2016), J. Phys.: Conf. Ser. 898 (2017) 062031, DOI: doi: 10.1088/1742-6596/898/6/062031 [Google Scholar]
  35. DESY Bitbucket repository, URL: https://stash.desy.de/ [accessed 2021-02-24] [Google Scholar]
  36. G. M. Kurtzer, V. Sochat and M. W. Bauer, Singularity: Scientific containers for mobility of compute, PLoS ONE 12(5) e0177459 (2017), DOI: doi: 10.1371/journal.pone.0177459 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.