Open Access
Issue |
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
|
|
---|---|---|
Article Number | 03013 | |
Number of page(s) | 9 | |
Section | Offline Computing | |
DOI | https://doi.org/10.1051/epjconf/202125103013 | |
Published online | 23 August 2021 |
- Apollinari G. et al, “High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report V.0.1”, CERN-2017-007-M. [Google Scholar]
- CMS Collaboration, “Technical Proposal for the Phase-II Upgrade of the CMS Detector”, CERN-LHCC-2015-010. [Google Scholar]
- CMS Collaboration, “The Phase-2 Upgrade of the CMS Endcap Calorimeter”, CERN-LHCC-2017-023. [Google Scholar]
- M. Rovere, Z. Chen, A. Di Pilato, F. Pantaleo and C. Seez, “CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High Energy Physics”, [arXiv: arXiv arXiv:2001.09761 [physics.ins-det]]. [Google Scholar]
- Rodriguez, Alex and Laio, Alessandro, “Clustering by fast search and find of density peaks,” Science 344, 1492–1496 (2014) [https://science.sciencemag.org/content/344/6191/1492]. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- K. Thulasiraman and M. N. S. Swamy, “Graphs: Theory and Algorithms,” John Wiley & Sons, Inc. (1992) [DOI:10.1002/9781118033104]. [Google Scholar]
- Francesco Berto and Jacopo Tagliabue, “Cellular Automata”, The Stanford Encyclopedia of Philosophy, 1095–5054 (2012) [Google Scholar]
- CMS Collaboration, “A novel reconstruction framework for an imaging calorimeter for HL-LHC”, [CMS-DP-2020/027] [Google Scholar]
- M. Rovere, Z. Chen, A. Di Pilato, F. Pantaleo and C. Seez, CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High Energy Physics, Frontiers in Big Data, 3, DOI: 10.3389/fdata.2020.591315 (2020) [CrossRef] [Google Scholar]
- Z. Chen, A. Di Pilato, F. Pantaleo and M. Rovere, GPU-based Clustering Algorithm for the CMS High Granularity Calorimeter, EPJ Web Conf. 245, DOI: 10.1051/epjconf/202024505005 (2020) [Google Scholar]
- TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, 2015 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.