Open Access
Issue
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
Article Number 03012
Number of page(s) 10
Section Offline Computing
DOI https://doi.org/10.1051/epjconf/202125103012
Published online 23 August 2021
  1. ATLAS collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3, S08003 (2008) [Google Scholar]
  2. L. Evans, P. Bryant, LHC Machine, Journal of Instrumentation 3, S08001 (2008) [Google Scholar]
  3. S. Agostinelli et al., Geant4—a simulation toolkit, Nucl. Instrum. Meth. A 506, 250–303 (2003) [Google Scholar]
  4. J. Allison et al., Geant4 developments and applications, IEEE T Nucl. Sci. 53, 270–278 (2006) [Google Scholar]
  5. P. Calafiura, J. Catmore, D. Costanzo, A. Di Girolamo, ATLAS HL-LHC Computing Conceptual Design Report, CERN-LHCC-2020-015 (2020) [Google Scholar]
  6. T. Yamanaka, The ATLAS calorimeter simulation FastCaloSim, J. Phys. Conf. Ser. 331 032053 [Google Scholar]
  7. ATLAS collaboration, The ATLAS Simulation Infrastructure, Eur. Phys. J. C70: 823–874 (2010) doi: 10.1088/1742-6596/523/1/012035 [Google Scholar]
  8. K. Edmonds, S. Fleischmann, T. Lenz, C. Magass, J. Mechnich, A. Salzburger, The Fast ATLAS Track Simulation (FATRAS), ATL-SOFT-PUB-2008-001 (2008), https://cds.cern.ch/record/1091969 [Google Scholar]
  9. ATLAS collaboration, AtlFast3: Next Generation of Fast Simulation in ATLAS, Computing and Software for Big Science, in press (2021) [Google Scholar]
  10. ATLAS collaboration, The new Fast Calorimeter Simulation in ATLAS, ATL-SOFT-PUB-2018-002 (2018), http://cds.cern.ch/record/2630434 [Google Scholar]
  11. ATLAS collaboration, Fast simulation of the ATLAS calorimeter system with Generative Adversarial Networks, ATL-SOFT-PUB-2020-006 (2020), https://cds.cern.ch/record/2746032 [Google Scholar]
  12. Athena, https://doi.org/10.5281/zenodo.2641997 [Google Scholar]
  13. ATLAS collaboration, Emulating the impact of additional proton-proton interactions in the ATLAS simulation by pre-sampling sets of inelastic Monte Carlo events, arXiv arXiv:2102.09495 (2021) [Google Scholar]
  14. CMS collaboration, Upgrades for the CMS simulation, J. Phys.: Conf. Ser. 608 012056 (2015) [Google Scholar]
  15. Ch. Gumpert, A. Salzburger, M. Kiehn, J. Hrdinka, N. Calace, ACTS: from ATLAS software towards a common track reconstruction software, J. Phys. Conf. Ser. 898 (2017) 042011 [Google Scholar]
  16. E. Ritsch, Concepts and Plans towards fast large scale MonteCarlo production for the ATLAS Experiment, J. Phys. Conf. Ser. 523, 012035 (2014), doi: 10.1088/1742-6596/523/1/012035 [Google Scholar]
  17. A. Basalaev, Z. Marshall, The Fast Simulation Chain for ATLAS, J. Phys. Conf. Ser. 898, 042016 (2017), doi: 10.1088/1742-6596/898/4/042016 [Google Scholar]
  18. R. Jansky, The ATLAS Fast Monte Carlo Production Chain Project, J. Phys. Conf. Ser. 664, 072024 (2015), doi: 10.1088/1742-6596/664/7/072024 [Google Scholar]
  19. E. Ritsch et al., Modernising ATLAS Software Build Infrastructure, J. Phys.: Conf. Ser. 1085, 032033 (2018), doi: 10.1088/1742-6596/1085/3/032033 [Google Scholar]
  20. T. Cuhadar-Donszelmann, W. Lampl, G.A. Stewart, ART ATLAS Release Tester using the Grid, EPJ Web Conf. 245, 05015 (2020), doi: 10.1051/epjconf/202024505015 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.