Open Access
Issue |
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
|
|
---|---|---|
Article Number | 03036 | |
Number of page(s) | 16 | |
Section | Offline Computing | |
DOI | https://doi.org/10.1051/epjconf/202125103036 | |
Published online | 23 August 2021 |
- F. Alamri, N. Pugeault, IEEE Transactions on Cognitive and Developmental Systems pp. 1–1 (2020) [Google Scholar]
- T. Kishimoto, M. Saito, J. Tanaka, Y. Iiyama, R. Sawada, K. Terashi, An improvement of object detection performance using multi-step machine learnings (2021), 2101.07571 [Google Scholar]
- H. Liu, K. Simonyan, Y. Yang, Darts: Differentiable architecture search (2019), 1806.09055 [Google Scholar]
- Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, J. Sun, Single path one-shot neural architecture search with uniform sampling (2020), 1904.00420 [Google Scholar]
- B.P. Roe, H.J. Yang, J. Zhu, Y. Liu, I. Stancu, G. McGregor, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 543, 577 (2005) [Google Scholar]
- P. Baldi, P. Sadowski, D. Whiteson, Nature Communications 5 (2014) [Google Scholar]
- G. Kasieczka, T. Plehn, A. Butter, K. Cranmer, D. Debnath, B.M. Dillon, M. Fairbairn, D.A. Faroughy, W. Fedorko, C. Gay et al., SciPost Physics 7 (2019) [Google Scholar]
- F. Hutter, L. Kotthoff, J. Vanschoren, eds., Automated Machine Learning: Methods, Systems, Challenges (Springer, 2018), in press, available at http://automl.org/book. [Google Scholar]
- P. Ren, Y. Xiao, X. Chang, P.Y. Huang, Z. Li, X. Chen, X. Wang, A comprehensive survey of neural architecture search: Challenges and solutions (2020), 2006.02903 [Google Scholar]
- T. Elsken, J.H. Metzen, F. Hutter, Neural architecture search: A survey (2019), 1808.05377 [Google Scholar]
- B. Zoph, Q.V. Le, Neural architecture search with reinforcement learning (2017), 1611.01578 [Google Scholar]
- B. Zoph, V. Vasudevan, J. Shlens, Q.V. Le, Learning transferable architectures for scalable image recognition (2018), 1707-07012 [Google Scholar]
- E. Real, A. Aggarwal, Y. Huang, Q.V. Le, Regularized evolution for image classifier architecture search (2019), 1802.01548 [Google Scholar]
- Y. Chen, T. Yang, X. Zhang, G. Meng, X. Xiao, J. Sun, Detnas: Backbone search for object detection (2019), 1903.10979 [Google Scholar]
- A. Brock, T. Lim, J.M. Ritchie, N. Weston, Smash: One-shot model architecture search through hypernetworks (2017), 1708.05344 [Google Scholar]
- G. Bender, P.J. Kindermans, B. Zoph, V. Vasudevan, Q. Le, Understanding and Simplifying One-Shot Architecture Search, in Proceedings of the 35th International Conference on Machine Learning, edited by J. Dy, A. Krause (PMLR, Stockholmsmassan, Stockholm Sweden, 2018), Vol. 80 of Proceedings of Machine Learning Research, pp. 550–559, http://proceedings.mlr.press/v80/bender18a.html [Google Scholar]
- H. Pham, M.Y. Guan, B. Zoph, Q.V. Le, J. Dean, Efficient neural architecture search via parameter sharing (2018), 1802.03268 [Google Scholar]
- X. Chen, L. Xie, J. Wu, Q. Tian, Progressive differentiable architecture search: Bridging the depth gap between search and evaluation (2019), 1904.12760 [Google Scholar]
- X. Dong, Y. Yang, Searching for a robust neural architecture in four gpu hours (2019), 1910.04465 [Google Scholar]
- H. Cai, L. Zhu, S. Han, Proxylessnas: Direct neural architecture search on target task and hardware (2019), 1812.00332 [Google Scholar]
- S. Xie, H. Zheng, C. Liu, L. Lin, Snas: Stochastic neural architecture search (2020), 1812.09926 [Google Scholar]
- T. Sjostrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, P.Z. Rasmussen, Christine, O. and Skands, Computer Physics Communications 191, 159 (2015) [Google Scholar]
- J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaitre, A. Mertens, M. Selvaggi, Journal of High Energy Physics 2014 (2014) [Google Scholar]
- K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 770–778 [Google Scholar]
- R. Cipolla, Y. Gal, A. Kendall, Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018), pp. 7482–7491 [Google Scholar]
- Z. Chen, V. Badrinarayanan, C.Y. Lee, A. Rabinovich, GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks, in Proceedings of the 35th International Conference on Machine Learning, edited by J. Dy, A. Krause (PMLR, 2018), Vol. 80 of Proceedings of Machine Learning Research, pp. 794–803, http://proceedings.mlr.press/v80/chen18a.html [Google Scholar]
- S. Liu, E. Johns, A.J. Davison, End-To-End Multi-Task Learning With Attention, in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019), pp. 1871–1880 [Google Scholar]
- M. Guo, A. Haque, D.A. Huang, S. Yeung, L. Fei-Fei, Dynamic Task Prioritization for Multitask Learning, in Computer Vision - ECCV 2018, edited by V. Ferrari, M. Hebert, C. Sminchisescu, Y. Weiss (Springer International Publishing, Cham, 2018), pp. 282–299, ISBN 978-3-030-01270-0 [Google Scholar]
- O. Sener, V. Koltun, Multi-Task Learning as Multi-Objective Optimization, in Advances in Neural Information Processing Systems, edited by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Curran Associates, Inc., 2018), Vol. 31, https://proceedings.neurips.cc/paper/2018/file/432aca3a1e345e339f35a30c8f65edce-Paper.pdf [Google Scholar]
- X. Lin, H.L. Zhen, Z. Li, Q.F. Zhang, S. Kwong, Pareto Multi-Task Learning, in Advances in Neural Information Processing Systems, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, R. Garnett (Curran Associates, Inc., 2019), Vol. 32, https://proceedings.neurips.cc/paper/2019/file/685bfde03eb646c27ed565881917c71c-Paper.pdf [Google Scholar]
- Multiml framework, https://github.com/UTokyo-ICEPP/multiml [Google Scholar]
- Multiml htautau, https://github.com/UTokyo-ICEPP/multiml_htautau [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.