Open Access
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
Article Number 03037
Number of page(s) 12
Section Offline Computing
Published online 23 August 2021
  1. The LZ Collaboration, D. Akerib, C. Akerlof, D. Akimov, A. Alquahtani, S. Alsum, T. Anderson, N. Angelides, H. Araujo, A. Arbuckle et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 953, 163047 (2020) [Google Scholar]
  2. The LZ Collaboration, D.S. Akerib, C.W. Akerlof, D.Y. Akimov, S.K. Alsum, H.M. Araujo, X. Bai, A.J. Bailey, J. Balajthy, S. Balashov et al., LUX-ZEPLIN (LZ) conceptual design report (2015), 1509.02910 [Google Scholar]
  3. B.J. Mount, S. Hans, R. Rosero, M. Yeh, C. Chan, R.J. Gaitskell, D.Q. Huang, J. Makkinje, D.C. Malling, M. Pangilinan et al., LUX-ZEPLIN (LZ) technical design report (2017), 1703.09144 [Google Scholar]
  4. E. Aprile, T. Doke, Reviews of Modern Physics 82, 2053–2097 (2010) [Google Scholar]
  5. The LZ Collaboration, D. Akerib, C. Akerlof, S. Alsum, H. Araujo, M. Arthurs, X. Bai, A. Bailey, J. Balajthy, S. Balashov et al., Physical Review D 101 (2020) [Google Scholar]
  6. The LZ Collaboration, D. Akerib, C. Akerlof, A. Alqahtani, S. Alsum, T. Anderson, N. Angelides, H. Araujo, J. Armstrong, M. Arthurs et al., Astroparticle Physics 125, 102480 (2021) [Google Scholar]
  7. NVIDIA, NVIDIA RTX™ platform, (2021), accessed: 2021-02-17 [Google Scholar]
  8. S. Blyth, Meeting the challenge of JUNO simulation with Opticks: GPU optical photon acceleration via NVIDIA® OptiXTM, in EPJ Web of Conferences (EDP Sciences, 2020), Vol. 245, p. 11003 [EDP Sciences] [Google Scholar]
  9. S. Blyth, Opticks: GPU Optical Photon Simulation for Particle Physics using NVIDIA® OptiXTM, in EPJ Web of Conferences (EDP Sciences, 2019), Vol. 214, p. 02027 [EDP Sciences] [Google Scholar]
  10. S. Blyth, Opticks: GPU Optical Photon Simulation for Particle Physics using NVIDIA® OptiXTM, in Journal of Physics: Conference Series (IOP Publishing, 2017), Vol. 898, p. 042001 [Google Scholar]
  11. S.G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke, D. McAllister, M. McGuire, K. Morley, A. Robison et al., Acm transactions on graphics (tog) 29, 1 (2010) [Google Scholar]
  12. NVIDIA, NVIDIA OptiX 7.2, (2020), accessed: 2021-05-05 [Google Scholar]
  13. NVIDIA, NVIDIA OptiX 7.2 - Programming Guide, (2020), accessed: 2021-02-17 [Google Scholar]
  14. K. Morley, How to Get Started with OptiX 7, (2020), accessed: 2021-02-17 [Google Scholar]
  15. NVIDIA, NVIDIA OptiX 6.5 - Programming Guide, (2020), accessed: 2021-02-17 [Google Scholar]
  16. S. Van Der Walt, S.C. Colbert, G. Varoquaux, Computing in science & engineering 13, 22 (2011) [Google Scholar]
  17. D. Crockford, The application/json media type for javascript object notation (json) (2006) [Google Scholar]
  18. Y.F. Li, Overview of the Jiangmen Underground Neutrino Observatory (JUNO), in International Journal of Modern Physics: Conference Series (World Scientific, 2014), Vol. 31, p. 1460300 [Google Scholar]
  19. S. Blyth, Integration of JUNO simulation framework with Opticks : GPU accelerated optical propagation via NVIDIA® OptiX™, in PLACEHOLDER: Proceedings of vCHEP 2021 (2021) [Google Scholar]
  20. S. Eriksen, H. Flecher, B. Krikler, L. Kreczko, Search for dark matter: Optical photon simulations at LZ (2018), Oracle's High Performance Cloud for Research and Innovation, [Google Scholar]
  21. S. Eriksen, Using Optical Photon Simulations at LUX-ZEPLIN in the search for Dark Matter (2019), Physics Postgraduate Conference,\%20Conference\%20Schedule.pdf [Google Scholar]
  22. S. Eriksen, LUX-ZEPLIN Optical Photon Simulations Using GPUs (2019), sTFC High Energy Physics Summer School, [Google Scholar]
  23. NERSC, National energy research scientific computing center, (2021), accessed: 2021-02-18 [Google Scholar]
  24. NERSC, Cori, (2021), accessed: 2021-02-18 [Google Scholar]
  25. S. Blyth, Opticks: GPU Accelerated Optical Photon Simulation using NVIDIA OptiX, (2021), accessed: 2021-02-18 [Google Scholar]
  26. NERSC, Cori GPU nodes, (2021), accessed: 2021-02-18 [Google Scholar]
  27. NERSC, Perlmutter, (2021), accessed: 2021-02-18 [Google Scholar]
  28. NVIDIA, CUDA GPUs | NVIDIA Developer, (2021), accessed: 2021-02-18 [Google Scholar]
  29. O. Creaner, M.E. Monazi, L. Gerhardt, Q. Riffard, S. Eriksen, Optical sims using GPUs, (2020), accessed: 2021-02-18 [Google Scholar]
  30. NERSC, NERSC documentation: Math libraries, (2021), accessed: 2021-02-18 [Google Scholar]
  31. NERSC, NERSC documentation: Applications, (2021), accessed: 2021-02-18 [Google Scholar]
  32. S. Blyth, Opticks install instructions, (2017), accessed: 2021-02-18 [Google Scholar]
  33. S. Blyth, Opticks externals, (2017), accessed: 2021-02-18 [Google Scholar]
  34. G. Van Rossum et al., Python Programming Language., in USENIX annual technical conference (2007), Vol. 41, p. 36 [Google Scholar]
  35. S. Blyth, Opticks testing, geocache creation, python setup, (2017), accessed: 2021-02-18 [Google Scholar]
  36. Docker, What is a container?,, accessed: 2021-02-18 [Google Scholar]
  37. D.M. Jacobsen, R.S. Canon, Proceedings of the Cray User Group pp. 33–49 (2015) [Google Scholar]
  38. Docker, Docker documentation,, accessed: 2021-02-18 [Google Scholar]
  39. Docker, Docker hub - container image library,, accessed: 2021-02-18 [Google Scholar]
  40. NERSC, Using shifter at NERSC, (2021), accessed: 2021-02-18 [Google Scholar]
  41. NERSC, Shifter: User defined images, (2020), accessed: 2021-02-18 [Google Scholar]
  42. O. Creaner, Opticks-on-shifter, (2021), accessed: 2021-02-18 [Google Scholar]
  43. O. Creaner, Opticks-rebuild, (2021), accessed: 2021-02-18 [Google Scholar]
  44. NVIDIA, NVIDIA CUDA, (2021), accessed: 2021-02-18 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.