Open Access
Issue |
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
|
|
---|---|---|
Article Number | 03055 | |
Number of page(s) | 9 | |
Section | Offline Computing | |
DOI | https://doi.org/10.1051/epjconf/202125103055 | |
Published online | 23 August 2021 |
- S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506, 250 (2003) [Google Scholar]
- J. De Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, M. Selvaggi, Journal of High Energy Physics 2014 (2014), 1307.6346 [Google Scholar]
- M. Paganini, L. De Oliveira, B. Nachman, Physical Review Letters 120, 1 (2018), 1705.02355 [Google Scholar]
- M. Paganini, L.D. Oliveira, B. Nachman, Physical Review D 97, 14021 (2018) [Google Scholar]
- M. Erdmann, J. Glombitza, T. Quast, Computing and Software for Big Science 3 (2019), 1807.01954 [Google Scholar]
- Y. Lu, J. Collado, D. Whiteson, P. Baldi, Phys. Rev. D 103, 036012 (2021) [Google Scholar]
- E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol, K. Krüger, arXiv preprint arXiv:2005.05334 (2020) [Google Scholar]
- A. Hariri, D. Dyachkova, S. Gleyzer, M. Awad, D. Morozova, Graph Generative Models for Fast Detector Simulations in Particle Physics, in Machine Learning and the Physical Sciences Workshop atNeurIPS (2020), 1, pp. 1–6, https://ml4physicalsciences. github.io/2020/files/NeurIPS_ML4PS_2020_138.pdf [Google Scholar]
- P. Musella, F. Pandolfi, Computing and Software for Big Science 2 (2018), 1805.00850 [Google Scholar]
- R. Di Sipio, M.F. Giannelli, S.K. Haghighat, S. Palazzo, Journal of High Energy Physics, 2019(8), 110. [Google Scholar]
- CMS Collaboration, CMS data preservation, re-use and open access policy (2014), http://opendata.cern.ch/record/411 [Google Scholar]
- CMS Collaboration, Tracker-hit-enriched ttjets_hadronicmgdecays_8tev-madgraph (2019), http://opendata.cern.ch/record/12200 [Google Scholar]
- Cms offline software (2021), https://github.com/cms-sw/cmssw [Google Scholar]
- T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, Computer Physics Communications 191, 159 (2015) [Google Scholar]
- A.M. Sirunyan, A. Tumasyan, W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl et al., Journal of Instrumentation 12 (2017), 1706.04965 [Google Scholar]
- M. Cacciari, G.P. Salam, G. Soyez, Journal of High Energy Physics 2008 (2008), 0802.1189 [Google Scholar]
- M. Cacciari, G.P. Salam, G. Soyez, The European Physical Journal C 72 (2012) [Google Scholar]
- I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial networks (2014), 1406.2661 [Google Scholar]
- M. Arjovsky, S. Chintala, L. Bottou, Wasserstein gan (2017), 1701.07875 [Google Scholar]
- I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of wasserstein gans (2017), 1704.00028 [Google Scholar]
- M. Mirza, S. Osindero, Conditional generative adversarial nets (2014), 1411.1784 [Google Scholar]
- M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin et al., TensorFlow: Large-scale machine learning on heterogeneous systems (2015), software available from tensorflow.org, http:// tensorflow.org/ [Google Scholar]
- F. Chollet et al., Keras, https://github.com/fchollet/keras (2015) [Google Scholar]
- J. Blue, alpha-davidson/falcon-cWGAN: Release for CHEP Submission (2021), https://doi.org/10.5281/zenodo.4569082 [Google Scholar]
- G. Hinton, N. Srivastava, K. Swersky, Coursera neural networks for machine learning lecture 6, http://www.cs.toronto.edu/~hinton/coursera/lecture6/ lec6.pdf [Google Scholar]
- S. Izquierdo, Cppflow, https://github.com/serizba/cppflow [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.