Open Access
Issue |
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
|
|
---|---|---|
Article Number | 04032 | |
Number of page(s) | 10 | |
Section | Online Computing | |
DOI | https://doi.org/10.1051/epjconf/202125104032 | |
Published online | 23 August 2021 |
- Lyndon Evans and Philip Bryant. LHC machine. JINST 3 (2008) S08001. [Google Scholar]
- LHCb collaboration, A. A. Alves Jr. et al. The LHCb detector at the LHC. JINST 3 (2008) S08005. [Google Scholar]
- Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. ImageNet classification with deep convolutional neural networks. DOI: 10.1145/3065386, Communications of the ACM, Volume 60, Issue 6. [Google Scholar]
- LHCb collaboration. LHCb calorimeters: Technical Design Report. CERN-LHCC-2000- 036; LHCb-TDR-2. [Google Scholar]
- Christian Lippmann Particle Identification, Figure 1, arXiv:1101.3276v4. [Google Scholar]
- R. Aaij et al. LHCb detector performance. Int. J. Mod. Phys. A30 (2015) 1530022, arXiv:1405.7808. [Google Scholar]
- D. Hilazo Aguilera. Identification de particulas mediante técnicas de clasificación en el calorimetro del LHCb. Final degree project in computer engineering. La Salle, Universitat Ramon Lull. July 2019, Page 9. Accessed: November, 2020. [Google Scholar]
- Loris Martinazzoli. Crystal Fibers for the LHCb Calorimeter Upgrade. IEEE Trans. Nucl. Sci. 67 (2020) 1003. [Google Scholar]
- Geant4 collaboration, S. Agostinelli et al. Geant4: A simulation toolkit. Nucl. Instrum. Meth. A 506 (2003) 250. [Google Scholar]
- PyTorch https://github.com/pytorch/pytorch/, Accessed: 27-May-2020. [Google Scholar]
- Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization, arXiv:1412.6980v9. [Google Scholar]
- T. R. Martinez & D. R. Wilson, The general inefficiency of batch training for gradient descent learning, Neural Networks 16 (2003) 1429–1451. [CrossRef] [Google Scholar]
- Tianqi Chen & Carlos Guestrin, XGBoost: A Scalable Tree Boosting System, arXiv:1603.02754v3. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.