Open Access
Issue
EPJ Web Conf.
Volume 253, 2021
ANIMMA 2021 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 08005
Number of page(s) 7
Section Decommissioning, Dismantling and Remote Handling
DOI https://doi.org/10.1051/epjconf/202125308005
Published online 19 November 2021
  1. ISO, B. “Measurement of radioactivity in the environment – Soil, ” BS ISO, 18589, Part 2, 2017, Part 3, 2007, Part 5, 2009, Part 6, 2009. [Google Scholar]
  2. ISO, B. “Water quality – Sampling, ” BS ISO, 5667, Part 11, 2009, Part 22, 2010. [Google Scholar]
  3. ISO, B. “Geotechnical investigation, and testing – Sampling methods and groundwater measurements, ” BS ISO, 22475, Part 1, 2006. [Google Scholar]
  4. ISO, B. “Water quality – Determination of the activity concentration of radionuclides – Methods by high resolution gamma-ray spectrometry, ” BS ISO, 10703, 2007. [Google Scholar]
  5. ISO, B. “Water quality – Strontium 90 and strontium 89 – Test methods using liquid scintillation counting or proportional counting, ” BS ISO, 13160, 2020. [Google Scholar]
  6. ONR, “Magnox Swarf Storage Silo (MSSS) – Risk and Hazard Reduction Programme Application for Agreement to Commence Installation and Inactive Commissioning of SEP2 and 1 Mobile Caves in MSSS, “ Office for Nuclear Regulation, 2016. [Online]. Available: https://www.onr.org.uk/pars/2015/sellafield-15-008.pdf. Accessed on: 14 July, 2021. [Google Scholar]
  7. ONR, “Magnox Swarf Storage Silo Retrievals Project Agreement to implement Phase 2 active commissioning trials of the MSSS compartment 10 Miscellaneous Beta Gamma Waste retrieval scheme, ” Office for Nuclear Regulation, 2019. [Online]. Available: https://www.onr.org.uk/pars/2019/sellafield-19-005.pdf. Accessed on: 14 July, 2021. [Google Scholar]
  8. ONR, “Quarterly Statement of Civil Incidents reported to ONR, ” Office for Nuclear Regulation, 2019. [Online]. Available: https://www.onr.org.uk/quarterly-stat/2019-4.htm. Accessed on: 14 July, 2021. [Google Scholar]
  9. Sellafield Ltd., “Delivering nuclear innovation – Characterisation and monitoring using in-ground assets, ” Game Changers, 2020. [Online]. Available: https://www.gamechangers.technology/static/u/Characterisation%20and%20Monitoring%20Challenge%20Statement.pdf. Accessed on: July 7, 2021. [Google Scholar]
  10. Sellafield Ltd., “Game Changers webinar – Characterisation and monitoring using in-ground assets, ” Game Changers, 2020. [Online]. Available: https://vimeo.com/458899566. Accessed on: July 7, 2021. [Google Scholar]
  11. Sellafield Ltd., “Groundwater monitoring at Sellafield – Annual data review, ” Report n. LQTD000758, 2016. [Google Scholar]
  12. Erdi-Krausz, G., Matolin, M., Minty, B., Nicolet, J. P., Reford, W. S., & Schetselaar, E. M., “Guidelines for radioelement mapping using gamma ray spectrometry data, ” International Atomic Energy Agency (IAEA), 2003. [Google Scholar]
  13. Keys, W. S., “A practical guide to borehole geophysics in environmental investigations, ” CRC Press, 1996. [Google Scholar]
  14. Schubert, G., “Treatise on geophysics, ” Elsevier, 2015. [Google Scholar]
  15. Ellis, D. V., & Singer, J. M., “Well logging for earth scientists”, Vol. 692, Dordrecht: Springer, 2007. [Google Scholar]
  16. Keys, W. S., Eggers, D. E., & Taylor, T. A., “Borehole geophysics as applied to the management of radioactive waste: site selection and monitoring, ” In Management of low-level radioactive waste, Volume II, 1979. [Google Scholar]
  17. Johnson, M. E., & Field, J. G., “Hanford SX-Farm Leak Assessments, ” Report In RPP-ENV-39658, Rev. 0, Washington River Protection Solutions Richland, Washington, 2010. [Google Scholar]
  18. Keys, W. S., Senftle, F. E., & Tanner, A. B., “Use of NaI(Tl) and germanium detectors for in situ x-ray spectral monitoring of boreholes at nuclear waste-disposal sites, ” No. 79-1220, US Geological Survey, 1979. [Google Scholar]
  19. Brodeur, J. R., & Nicaise, W. F., “Subsurface radionuclide assessment at Hanford using HPGe gamma-ray borehole geophysics, ” Transactions of the American Nuclear Society, 70(CONF-940602-), 1994. [Google Scholar]
  20. Saint-Gobain Ceramics & Plastics, Inc., “NaI(Tl) and Polyscin NaI(Tl) – Sodium Iodide Scintillation Material, ” 2020. [Online]. Available: sodium-iodide-material-data-sheet_0.pdf (saint-gobain.com). Accessed on: July 7, 2021 [Google Scholar]
  21. McGregor, D. S., “Materials for gamma-ray spectrometers: Inorganic scintillators, ” Annual Review of Materials Research, 48, 245-277, 2018. [CrossRef] [Google Scholar]
  22. Quarati, F. G. A., et al., “Scintillation and detection characteristics of high-sensitivity CeBr3 gamma-ray spectrometers, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 729: 596-604, 2013. [CrossRef] [Google Scholar]
  23. Shah, K. S., Glodo, J., Higgins, W., Van Loef, E. V., Moses, W. W., Derenzo, S. E., & Weber, M. J., “CeBr3 scintillators for gamma-ray spectroscopy, ” IEEE Transactions on Nuclear Science, 52(6), 31573159, 2005. [CrossRef] [Google Scholar]
  24. Drozdowski, W., Dorenbos, P., Bos, A. J., Owens, A., & Richaud, D., “Gamma radiation hardness of Ø1″×1″LaBr3: Ce, LaCl3: Ce, and CeBr3 scintillators, ” In 2008 IEEE Nuclear Science Symposium Conference Record (pp. 2856-2858), IEEE, 2008. [CrossRef] [Google Scholar]
  25. Kari Peräjärvi, S. T. U. K., Csome, F. C., & Borg, J., “European Reference Network for Critical Infrastructure Protection: Novel detection technologies for nuclear security”, 2018. [Google Scholar]
  26. John Caunt Scientific Ltd., “Gamma-Neutron Scintillation Detector, ” 2021. [Online]. Available: (CLYC)CLYC | JCS Nuclear Solutions (johncaunt.com). Accessed on: July 7, 2021. [Google Scholar]
  27. X-Z LAB, Inc., “GAGG(Ce) – Scintillation Crystal, ” 2021. [Online]. Available: https://www.x-zlab.com/product/gagg-scintillation-crystal/. Accessed on: July 7, 2021. [Google Scholar]
  28. Yoneyama, M., Kataoka, J., Arimoto, M., Masuda, T., Yoshino, M., Kamada, K., Usuki, Y., “Evaluation of GAGG:Ce scintillators for future space applications, ” Journal of Instrumentation, 13(02), P02023, 2018. [CrossRef] [Google Scholar]
  29. Mesick, K. E., Bartlett, K. D., Coupland, D. D. S., Stonehill, L. C., “Effects of proton-induced radiation damage on CLYC and CLLBC performance, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 948, 162774, 2019. [CrossRef] [Google Scholar]
  30. Hendriks, P. H. G. M., Limburg, J., De Meijer, R. J., “Full-spectrum analysis of natural γ-ray spectra, ” Journal of Environmental Radioactivity, 53(3), 365-380, 2001. [CrossRef] [PubMed] [Google Scholar]
  31. Koomans, R., “Calibration of spectral gamma tools, ” The Medusa Institute, 2018. [Online]. Available: https://the.medusa.institute/display/GW/Calibration+of+spectral+gamma+tools. Accessed on: 15 February, 2021. [Google Scholar]
  32. IAEA, “X-ray and gamma-ray decay data: Standards for detector calibration and other applications, ” International Atomic Energy Agency (IAEA), 2005. [Online]. Available: https://www-nds.iaea.org/xgamma_standards/. Accessed on: 7 July, 2021. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.