Open Access
Issue
EPJ Web Conf.
Volume 255, 2021
EOS Annual Meeting (EOSAM 2021)
Article Number 06003
Number of page(s) 4
Section Topical Meeting (TOM) 8- Nonlinear and Quantum Optics
DOI https://doi.org/10.1051/epjconf/202125506003
Published online 18 November 2021
  1. Streets, A. M.; Li, A.; Chen, T.; Huang, Y. Imaging without fluorescence: nonlinear optical microscopy for quantitative cellular imaging. Anal. Chem. 2014, 86, 8506−8513. [Google Scholar]
  2. Min, W.; Freudiger, C.W.; Lu, S.; Xie, X.S. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu. Rev. Phys. Chem. 2011, 62, 501-530. [Google Scholar]
  3. Sirleto, L.; Ferrara, M.A.; Nikitin, T.; Novikov, S.; Khriachtchev, L. Giant Raman gain in silicon nanocrystals. Nat. Commun. 2012, 3, 1–6. doi: 10.1038/ncomms2188; [Google Scholar]
  4. Sirleto, L.; Vergara, A.; Ferrara, M.A. Advances in stimulated Raman scattering in nanostructures. Adv. Opt. Photon. 2017, 9, 169–217. doi: 10.1364/AOP.9.000169 [Google Scholar]
  5. M.A. Ferrara, L.Sirleto, G.Nicotra, C.Spinella, I.Rendina. Enhanced gain coefficient in Raman amplifier based on silicon nanocomposites. 2011 vol.9, pp.1-7. doi:10.1016/j.photonics.2010.07.007. [Google Scholar]
  6. Sirleto, L.; Aronne, A.; Gioffrè, M.; Fanelli, E.; Righini, G.C.; Pernice, P.; Vergara, A. Compositional and thermal treatment effects on Raman gain and bandwidth in nanostructured silica-based glasses. Opt. Mater. 2013, 36, 408–413. http://dx.doi.org/10.1016/j.optmat.2013.10.001 [Google Scholar]
  7. Freudiger, C.W.; Min,W.; Saar, B.G.; Lu, S.; Holtom, G.R.; He, C.; Tsai, J.C.; Kang, J.X.; Xie, X.S. Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy. Science 2008, 322, 1857–1861. [CrossRef] [PubMed] [Google Scholar]
  8. Cheng, J.-X.; Xie, X.S. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science 2015, 350, aaa8870. [CrossRef] [Google Scholar]
  9. Camp, C.H., Jr.; Cicerone, M.T. Chemically sensitive bioimaging with coherent Raman scattering. Nat. Photon 2015, 9, 295–305. [CrossRef] [Google Scholar]
  10. Zumbusch, A.; Langbein,W.; Borri, P. Nonlinear vibrational microscopy applied to lipid biology. Prog. Lipid Res. 2013, 52, 615–632. [CrossRef] [Google Scholar]
  11. Wei, L.; Hu, F.; Shen, Y.; Chen, Z.; Yu, Y.; Lin, C.; Wang, M. C.; Min, W. Live-cell imaging with alkyne tagged small biomolecules by stimulated Raman Scattering. Nat. Methods, 11, 410−412 (2014). [Google Scholar]
  12. Wei, Y Shen, F Xu, F Hu, JK Harrington, KL Targoff, et al.: Imaging complex protein metabolism in live organisms by stimulated Raman scattering microscopy with isotope labeling, ACS Chemical Biology, vol. 10, no. 3, pp. 901-908, 2015. [Google Scholar]
  13. Fanghao Hu, Michael R. Lamprecht, LuWei, Barclay Morrison Wei Min. Bioorthogonal chemical imaging of metabolic activities in live mammalian hippocampal tissues with stimulated Raman scattering. Scientific Reports | 6:39660 | DOI: 10.1038/srep39660. [Google Scholar]
  14. Lu Wei, Fanghao Hu, Zhixing Chen, Yihui Shen, Luyuan Zhang, and Wei Min, Live-Cell Bioorthogonal Chemical Imaging: Stimulated Raman Scattering Microscopy of Vibrational Probes. Acc. Chem. Res., 2016, 49(8), pp 1494–1502. DOI: 10.1021/acs.accounts.6b00210 [Google Scholar]
  15. D. Zhang, M. N. Slipchenko, and J. X. Cheng, J. Phys. Chem. Lett., vol. 2, no. 11, pp. 1248-1253, 2011. [Google Scholar]
  16. C. Zhang, K.-C. Huang, B. Rajwa, J. Li, S. Yang, H. Lin, C.-S. Liao, G. Eakins, S. Kuang, V. Patsekin,J. P. Robinson, and J.-X. Cheng: Stimulated Raman scattering flow cytometry for label-free single-particle analysis, Optica, vol. 4, no. 1, 2017 [Google Scholar]
  17. R. Ranjan, M. A. Ferrara, A. Filograna, C. Valente and L. Sirleto, “Femtosecond Stimulated Raman Microscopy: Home-built realization and a case study of Biological imaging”, Journal of Instrumentation 14, P09008 (2019). [Google Scholar]
  18. R. Ranjan, M. Indolfi, M. A. Ferrara, L. Sirleto, “Implementation of a Nonlinear Microscope Based on Stimulated Raman Scattering”, J. Vis. Exp. 149, e59614 (2019). [Google Scholar]
  19. M. A. Ferrara, A. Filograna, R. Ranjan, D. Corda, C. Valente, L. Sirleto, “Three-dimensional label-free imaging throughout adipocyte differentiation by stimulated Raman microscopy”, PLoS ONE 14, e0216811 (2019). [Google Scholar]
  20. A. D’Arco, M. A. Ferrara, M. Indolfi, V. Tufano and L. Sirleto, “Label-free imaging of small lipid droplets by femtosecond-stimulated Raman scattering microscopy”, Journal of Nonlinear Optical Physics & Materials 26, 1750052 (2017). [Google Scholar]
  21. A. D’Arco, N. Brancati, M. A. Ferrara, M. Indolfi, M. Frucci, L. Sirleto, “Subcellular chemical and morphological analysis by stimulated Raman scattering microscopy and image analysis techniques”, Biomedical Optics Express 7, p. 1853-1864 (2016). [Google Scholar]
  22. Sirleto, L.; Ranjan, R.; Ferrara, M.A., Analysis of Pulses Bandwidth and Spectral Resolution in Femtosecond Stimulated Raman Scattering Microscopy. Appl. Sci. 2021, 11, 3903. [Google Scholar]
  23. R. Ranjan, A. D’Arco, M. A. Ferrara, M. Indolfi, M. Larobina and L. Sirleto, “Integration of stimulated Raman gain and stimulated Raman losses detection modes in a single nonlinear microscope”, Optics Express 26, pp. 26317-26326 (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.