Open Access
EPJ Web Conf.
Volume 263, 2022
8th Complexity-Disorder Days 2021
Article Number 01010
Number of page(s) 13
Published online 28 April 2022
  1. M. Planck, Zur Theorie des Gesetzes der Energieverteilung in Normal spectrum. Deutsch. Phys. Ges. 2, p. 237–245 (1900). Reprinted in Max Planck, Physikalisch Abhandlungen und Vortrage, (Friedr. Vieweg und Sohn, Braunschweig 1958) Vol. 1, 698706. [Google Scholar]
  2. E. Broda, The intellectual quadrangle Mach- Boltzmann-Planck-Einstein, CERN report 81-10, Geneva, January (1981), republished with added material (1983). German translation WWF (1985) (1983), p. 129-150. [Google Scholar]
  3. W. Nagourney, J. Sandberg, H. Dehmelt, Shelved Optical electron amplifier: observation of quantum jumps. Phys. Rev. Lett. 56, 2797–2799 (1986) [CrossRef] [PubMed] [Google Scholar]
  4. H.G. Dehmelt, Bull. Am. Phys. Soc. 20, p. 60; (1975); IEEE Trans Instrum. Meas. IM-31, 83 (1982) ; and Nature (London) 325, 581 (1987) [Google Scholar]
  5. P.A.M. Dirac, The quantum theory of the emission and absorption of radiation”, Proc. Roy. Soc. A114, 243 (1927) [Google Scholar]
  6. E. Fermi, Quantum theory of radiation, Rev. Mod. Phys. 4, 88–132 (1932) [Google Scholar]
  7. A.N. Kolmogorov, On analytical methods in probability theory p. 62 and sq. (1930) in Selected works of A.N. Kolmogorov Vol II, Probability theory and mathematical statistics (Springer Series on Mathematics and its application, Kluwer, 1992). [Google Scholar]
  8. Y. Pomeau, M. Le Berre, J. Ginibre, Ultimate statistical physics: fluorescence of a single atom. J. of Stat. Phys., Special issue on Statphys 26, 104002 (2016) [Google Scholar]
  9. Hugh Everett, Relative State Formulation of Quantum Mechanics, Reviews of Modern Physics. 29, 454–462 (1957) [CrossRef] [Google Scholar]
  10. S. Reynaud, J. Dalibard, C. Cohen-Tannoudji, Photon statistics and quantum jumps: the picture of the dressed atom radiative cascade, IEEE, J. Quant. Electr., 24, 1395 (1987) [Google Scholar]
  11. C. Cohen-Tannoudji, B. Zambon, E. Arimondo, Quantum-jump approach to dissipative processes: application to amplification without inversion, J. Opt. Soc. Am. B 10, 2107 (1993) In this paper the authors make a statistical analysis of the random sequence of quantum jumps. But, contrary to us, they include damping in the coherent evolution periods as done in Ref. [10]. This leads to decreasing complex amplitudes during the deterministic regime. [CrossRef] [Google Scholar]
  12. M.B. Plenio, P.L. Knight, Quantum-jump approach to dissipative dynamics in quantum optics, Rev. of Mod. Phys. 70, 101–145 (1998) [CrossRef] [Google Scholar]
  13. P. Résibois and M. de Leener, Classical Kinetic theory of fluids Chapter VII-4 (Wiley, New-York 1976). [Google Scholar]
  14. B. R. Mollow, Power Spectrum of Light Scattered by Two-Level Systems, Phys. Rev. 188, 1969–1975 (1969) [CrossRef] [Google Scholar]
  15. see L. Ortiz-Gutierrez et al., Mollow triplet in cold atoms, New J. Phys. 21, 093019 (2019) and references herein. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.